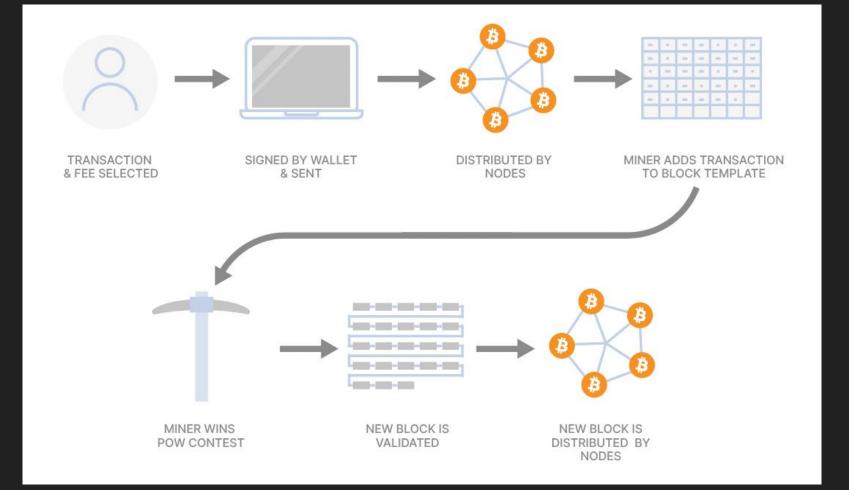
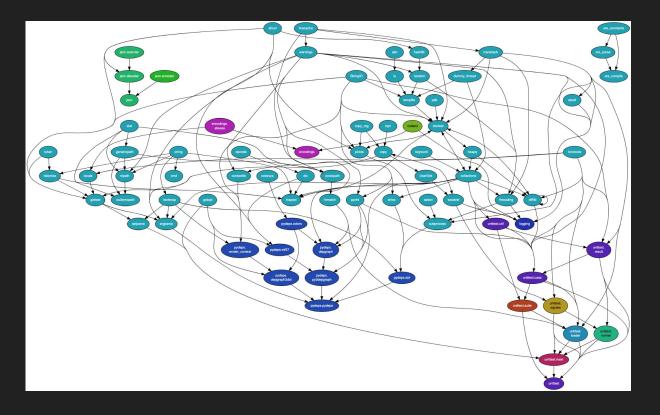
The software supply chain of crypto and decentralization


Martin Monperrus, César Soto-Valero, Javier Ron, Benoit Baudry and friends

TL;DR: "The crypto ecosystem is as good as its software supply chain"


Software supply chain

"The set of all dependencies and tools used to build, deploy and run a software system"

Starting with

- The dependencies (Maven, NPM, etc)
- The core (compiler, linker, minifier)
- The pipelines (CI/CD)

Dependencies

Bugs? Breaking changes? Malicious code injection?

Example attack on dependency (event-stream, target copay wallet)

Other examples

- DyDx
 - https://www.mend.io/resources/blog/popular-cryptocurrency-exchange-dydx-has-had-its-npm-account-hacked/
- Sushiswap
 <u>https://blog.sonatype.com/3-million-cryptocurrency-heist-malicious-github-commit?hsLangen-us</u>
- Cryptomining in docker
 https://www.darkreading.com/attacks-breaches/container-supply-chain-attacks-cashing-in-on-cryptojacking
- And counting... https://chains.proj.kth.se/software-supply-chain-attacks-crypto.html

Countermeasures (KUTE)

- Know your dependencies (Software bill of materials)
 - https://github.com/CycloneDX
- Update your dependencies (Regularly and Automatically)
 - o Dependabot, Renovate, DepFu
- Track changes when updating (changelog/authors/keys)
 - https://github.com/lightbend-labs/jardiff
- Ensure at runtime (Software integrity)
 - https://chains-project.github.io

All of this is platform/language dependent

Know your dependencies (Ethereum Java Nodes)

Challenges of Producing Software Bill Of Materials for Java

Musard Balliu, Benoit Baudry, Sofia Bobadilla, Mathias Ekstedt, Martin Monperrus, Javier Ron, Aman Sharma, Gabriel Skoglund, César Soto-Valero, Martin Wittlinger

Abstract—Software bills of materials (SBOM) promise to become the backbone of software supply chain hardening. We deep-dive into 6 tools and the accuracy of the SBOMs they produce for complex open-source Java projects. Our novel insights reveal some hard challenges for the accurate production and usage of SBOMs.

César Soto-Valero , Martin Monperrus , and Benoit Baudry , KTH Royal Institute of Technology

Ethereum is the single largest programmable blockchain platform today. Ethereum nodes operate the blockchain, relying on a vast supply chain of third-party software dependencies.

Know your dependencies (Ethereum Java Nodes)

- Besu (Eth1)

- Teku (Eth2)


January 202	
Besu (Eth1)	Teku (Eth2)
268,356	209,860
3,125	3,142
115	65
41	57
355	293
165	146
127	79
49	22
171	150
	268,356 3,125 115 41 355 165 127 49

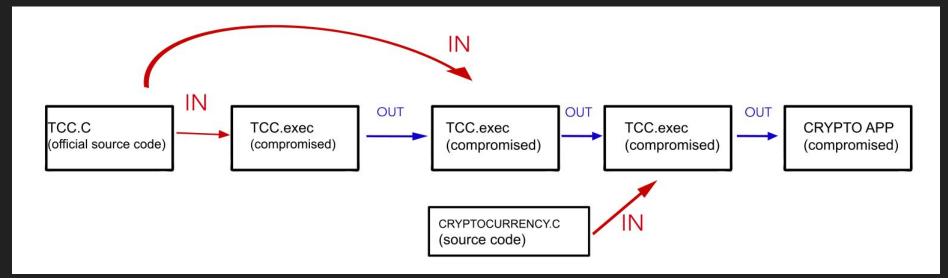
^{\$} build-info-go

^{\$} gradle dependencies --scan

Mitigate Build Attacks (reproducible)

"The ability to fully control the produced binaries in a deterministic way"

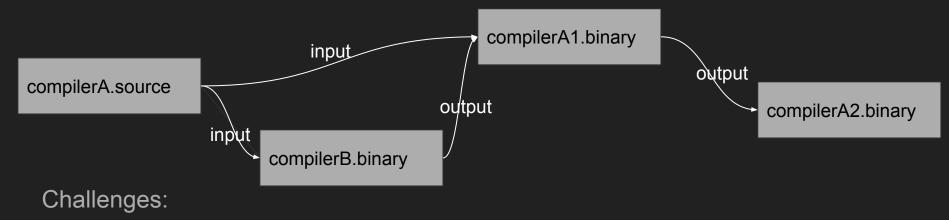
- Gitian (invented by bitcoin, 2010): https://gitian.org/
- Guix https://guix.gnu.org/ (bitcoin today)
- NIX <u>https://nixos.org/</u>
- Build attestations https://github.com/bitcoin-core/guix.sigs
- Geth builds are not reproducible


SHA256:

5a6b35d1a348a402f2d2d6ab5aed6 53a1a1f13bc63aaaf51605e3501b0 733b7a

https://github.com/chains-project/bt c-supply-chain

Mitigate Trusting Trust Attacks


"To what extent should one trust a statement that a program is free of Trojan horses."

Niklas Rosencrantz's Master's thesis, KTH, 2022

Diverse Double Compilation

"The usage of two different compilers for the same language to counter trusting trust attacks"

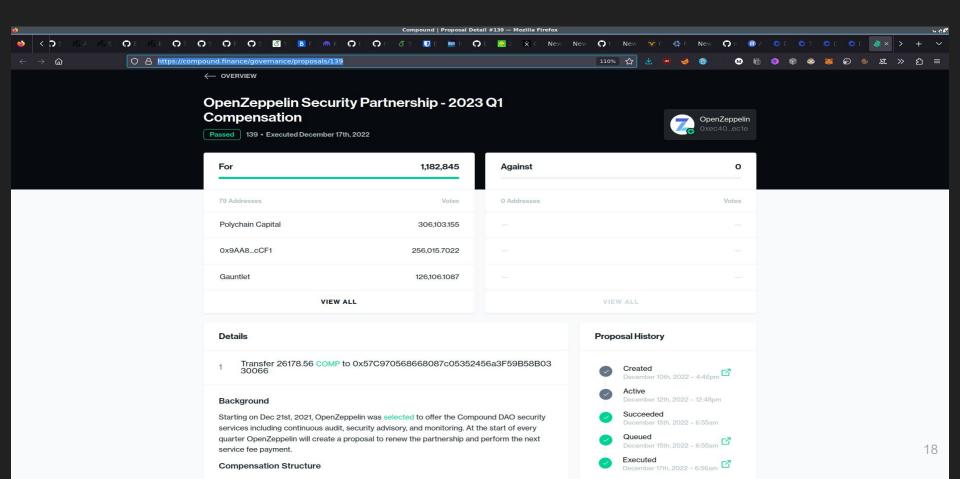
- Have two different compatible compilers
- Integrate them in mainstream continuous delivery of compilers

Software supply chain of decentralization

- "Governance code ("Code is law")
 - o Example:
 - Voting code
 - Tax code
 - Grant allowance code
- Core properties
 - Transparency = Democracy
 - Immutability = Political Stability
- State-of-the-art: "Decentralized Autonomous Organization" (DAO)

Smart contracts for governance

https://github.com/MolochVentures/moloch/blob/master/contracts/Moloch.sol


```
moloch/Moloch.sol at master · MolochVentures/moloch — Mozilla Firefox
                                                                                                                                                                V 06
C B C C C C C C C C C
                                                   OS OS OK OS ON BE MK OL OF SS DE E
                ○ A https://github.com/MolochVentures/moloch/blob/master/contracts/Moloch.sol
 713 lines (557 sloc) 33.6 KB
        pragma solidity 0.5.3;
        import "./SafeMath.sol";
        import "./IERC20.sol";
        import "./ReentrancyGuard.sol";
        contract Moloch is ReentrancyGuard {
            using SafeMath for uint256;
            GLOBAL CONSTANTS
            uint256 public periodDuration; // default = 17280 = 4.8 hours in seconds (5 periods per day)
            uint256 public votingPeriodLength; // default = 35 periods (7 days)
            uint256 public gracePeriodLength; // default = 35 periods (7 days)
            uint256 public proposalDeposit; // default = 10 ETH (~$1,000 worth of ETH at contract deployment)
            uint256 public dilutionBound; // default = 3 - maximum multiplier a YES voter will be obligated to pay in case of mass ragequit
            uint256 public processingReward; // default = 0.1 - amount of ETH to give to whoever processes a proposal
            uint256 public summoningTime; // needed to determine the current period
            address public depositToken; // deposit token contract reference; default = wETH
            // HARD-CODED LIMITS
            // These numbers are quite arbitrary; they are small enough to avoid overflows when doing calculations
            // with periods or shares, yet big enough to not limit reasonable use cases.
            uint256 constant MAX_VOTING_PERIOD_LENGTH = 10**18; // maximum length of voting period
            uint256 constant MAX_GRACE_PERIOD_LENGTH = 10**18; // maximum length of grace period
```

The DAO update regression

- Problem: how to secure a governance update? (= a code update)
- Prerequisite: Votes on patches
- Solution: Automated deployment with high integrity

https://compound.finance/governance/proposals/139

"Governance in programmable societies vitally requires software integrity"

References

<u>The Multibillion Dollar Software Supply Chain of Ethereum</u> (César Soto-Valero, Martin Monperrus and Benoit Baudry), In IEEE Computer, 2022.

<u>Challenges of Producing Software Bill Of Materials for Java</u> (Musard Balliu, Benoit Baudry, Sofia Bobadilla, Mathias Ekstedt, Martin Monperrus, Javier Ron, Aman Sharma, Gabriel Skoglund, César Soto-Valero and Martin Wittlinger), Technical report 2303.11102, arXiv, 2023.

<u>Highly Available Blockchain Nodes With N-Version Design</u> (Javier Ron, César Soto-Valero, Long Zhang, Benoit Baudry and Martin Monperrus), Technical report 2303.14438, arXiv, 2023.