
1

Lecture on
Automated Software Engineering

Alloy: Analyzing Software
Requirements, Design and Algorithms

Creative Commons Attribution License
Copying and modifying are authorized
as long as proper credit is given to the
author.

Martin Monperrus, Ph.D.

The latest version of these slides can be found at: http://www.monperrus.net/martin/alloy-slides.pdf

version of Oct 15, 2012

http://www.monperrus.net/martin/
http://www.monperrus.net/martin/alloy-slides.pdf

2

Content of this lecture

These slides
● provide an overview of the language "Alloy"
● provide an overview of the different usage of Alloy:

● generate instances (e.g. test cases)
● detect overspecifications
● detect underspecifications
● verify properties

● See also "Alloy: A Quick Reference"
http://www.monperrus.net/martin/alloy-quick-ref.pdf

http://www.monperrus.net/martin/alloy-quick-ref.pdf

3

Content of this lecture

These slides
● provide an overview of the language "Alloy"
● provide an overview of the different usage of Alloy:

● generate instances (e.g. test cases)
● detect overspecifications
● detect underspecifications
● verify properties

● See also "Alloy: A Quick Reference"
http://www.monperrus.net/martin/alloy-quick-ref.pdf

http://www.monperrus.net/martin/alloy-quick-ref.pdf

4

References:

● ALCOA: The Alloy constraint analyzer, 2000

● Automating First-Order Relational Logic, 2000

● Finding bugs with a constraint solver, 2000

● A micromodularity mechanism, 2001

● Alloy: a lightweight object modelling notation, 2002

● Software Abstractions Logic, Language, and Analysis, 2006

http://alloy.mit.edu

5

What is Alloy?

Alloy is a tool to find conceptual bugs (not implementation bugs): domain
logic, communication protocols, emergent properties, etc.

A bug is a property which is not verified:

● No explicit property = no bug found

"No planes can be
allowed to land at the
same time"

6

The intuition

The core idea of Alloy is transform a property and the
corresponding model into a first order logic formula:

and to verify this model with a standard SAT solver:

The formula is satisfiable:

x0=true

x1=false

r00=true

etc.

7

Generating instances with Alloy

Alloy

8

Alloy consists of generating
instances of an object-
oriented model.

Alloy

9

sig Island { }
sig Town { island : Island }
sig Road {
 end1 : Town,
 end2 : Town
}

fact {
no i,j: Island | some r : Road |
 i!=j and r.end1.island =i and r.end2.island =j
}

run { } for 3

Your first Alloy Program: a WoW Map Generator

A basic Alloy model consists of signatures
and facts.

10

Detecting overspecification with
Alloy (no instances)

Alloy

11

In case of overspecification,
there are no possible
instances. This appears even
in presence of slight
overspecification.

Overspecification: assumption

12

A natural language specification (1)

● A file system object has a parent

● A directory is a special kind of file system object

● A directory contains file system objects

● There is one directory which is called the root

● The root directory has no parent

13

// A file system object has a directory as parent
sig FSObject {
 parent: Dir
}

// A directory is a special kind of file system object
sig Dir extends FSObject {
// A directory contains file system objects
 contents: set FSObject
}

// There is one directory which is called the root
one sig Root extends Dir {}

// The root directory has no parent
fact RootProperty { no Root.parent }

run {} for 5

Overspecifications are detected with
the absence of instances.

14

● Overspecification are detected by "No Instance Found"

15

// A file system object has a directory as parent
sig FSObject {
 parent : Dir
}

// A directory is a special kind of file system object
sig Dir extends FSObject {
// A directory contains file system objects
 contents: set FSObject
}

// There is one directory which is called the root
one sig Root extends Dir {}

// The root directory has no parent
fact { no Root.parent }

run {

}

~ Java class

~ Java extends

~ UML 0..*

singleton

fact = always true

find instances

~ UML 1..1

16

// R1: All file system objects but Root have a directory as parent
sig FSObject {
 parent: lone Dir
}

// A directory is a special kind of file system object
sig Dir extends FSObject {
// A directory contains file system objects
 contents: set FSObject
}

// There is one directory which is called the root
one sig Root extends Dir {}

// The root directory has no parent
fact RootProperty {
no Root.parent
// see R1
all t:FSObject | t not in Root implies one t.parent
}

run {}

~ UML 0..1

Predicate logic

The Fix

17

A natural language specification (2)

● A file system object can have a parent

● A directory is a special kind of file system object

● A directory contains file system objects

● A file is a special kind of file system objects

● There is one special directory which is called the root and has no parent

● A directory is the parent of its contents

● Every file system object is in one directory

● A directory can not be in itself

● A directory can not be one of its ancestors

● It is possible to have directories containing several objects

● All file system objects must have one parent

Where is the bug?

19

Detecting Underspecifications
with Alloy (wrong instances)

Alloy

20

In case of underspecification,
wrong instances appear
quickly. The search strategies
of Alloy further fasten their
occurrences.

Underspecification: assumption

21

Example 1

sig FSObject { parent: Dir }
sig Dir { contents: set FSObject }
pred noCycle { all d:Dir | d not in d.^parent }
// question
run { some FSObject and noCycle }

Specification:

● A file system object is in a directory

● A directory contains file system objects

● There is no cycle in the structure

Question: is it possible?

Warning
The join operation here always yields an empty set.
Left type = {this/Dir}
Right type = {this/FSObject->this/Dir}

A transitive
closure is the set
of all reachable
nodes.

Alloy is a typed language, some bugs are caught at compile time.
Bug: instances of Dir have no field "parent"
Solution: add "extends Dir"

22

Example 1

sig FSObject { parent: Dir }

sig Dir extends FSObject { contents: set FSObject }

pred noCycle { all d:Dir | d not in d.^parent }

// question

run { some FSObject and noCycle }

Specification:

● A file system object is in a directory

● A directory is a file system object and contains file system objects

● There is no cycle in in the structure

Question: is it possible?

No instance found!

Bug: no concept of Root directory

Solution: add the missing concept and the associated facts

23

Example 1

sig FSObject { parent: Dir }
sig Dir extends FSObject { contents: set FSObject }
pred noCycle {
all d:Dir - Root | d not in d.^parent
}
one sig Root extends Dir {}

run { some FSObject and noCycle }

Specification:

● A file system object is in a directory

● A directory is a file system object and contains file system objects

● There is no cycle in in the structure

● There is on directory called Root which has no parent.

Question: is it possible?

24

Example 1

sig FSObject { parent: lone Dir }

sig Dir extends FSObject { contents: set FSObject }

pred noCycle {

all d:Dir - Root | d not in d.^parent

}

one sig Root extends Dir {}

fact {no Root.parent}

run { some FSObject and noCycle }

Specification:

● A file system object is in a directory

● A directory is a file system object and contains file system objects

● There is no cycle in in the structure

● There is on directory called Root which has no parent.

Question: it it enough?

25

Example 1

fact { all d:Dir - Root | d not in d.^parent }

fact { all d:Dir | all c:d.contents | d = c.parent }

Specification:

● A file system object is in a directory

● A directory is a file system object and contains file system objects

● There is no cycle in in the structure

● There is on directory called Root which has no parent.

● A directory is the parent of its content

Question: it it enough?

26

Example 1

fact { all f:FSObject - Root | f in
f.parent.contents }

● A file system object is in a directory

● A directory is a file system object and contains file system objects

● There is no cycle in in the structure

● There is on directory called Root which has no parent.

● A directory is the parent of its content

● All files but root are in the contents of its parent directory

Question: it it enough? YES (in a certain scope, by checking some instances)

27

The Final Specification

abstract sig FSObject { parent: lone Dir }

sig Dir extends FSObject { contents: set FSObject }

sig File extends FSObject {}

one sig Root extends Dir {}

fact {no Root.parent}

fact { all d:FSObject - Root | d not in d.^parent }

fact { all d:Dir | all c:d.contents | d = c.parent }

fact { all f:FSObject - Root | f in f.parent.contents }

run { } for 6

28

Verifying Properties
with Assertions

Alloy

29

sig Gang { members : set Inmate }
sig Inmate { room: Cell }
sig Cell { }

// no room shared
pred safe {
 no g1,g2: Gang | g1!=g2 and some (g1.members.room &
g2.members.room)
}

pred happy {
 all p1,p2 : Inmate |
 // if they are in the same room
 // they are in the same gang
 p1.room = p2.room
implies ~members[p1] = ~members[p2]
}

check {safe implies happy } for 3

safe

30

Assertions

● An assertion derives/emerges from the rest of the world
● e.g. N predicates implies 1 predicate
● The N predicates will be in the implementation, not the

property itself
● Two ways of expressing assertions:

● check {safe implies happy } for 3 // anonymous
● named assertion:

assert safe_implies_happy {safe implies happy }
check safe_implies_happy for 3

31

Predicates

A predicate is a conditional fact.

It is used for searching for
particular instances, and for writing
assertions.

A predicate may have arguments.

32

// predicate with argument
pred happy[p1 : Inmate] {
 some p2 : Inmate - p1|
 // if they are in the same room
 // they are in the same gang
 p1.room = p2.room
 and ~members[p1] = ~members[p2]
}

// predicate used for searching for instances
run happy

// predicate used in assertions
check {safe implies happy } for 3

Predicates

33

functions

A function is a side-effect free
helper.

It is used for reusing common
code.

34

fun gangOf[p1 : Inmate] : Gang {
 ~members[p1]
}

pred happy[p1 : Inmate] {
 some p2 : Inmate - p1|
 // if they are in the same room
 // they are in the same gang
 p1.room = p2.room
 and gangOf[p1] = gangOf[p2]
}

Functions

46

Summary

Alloy usages are:
● generating instances
● detecting overspecifications
● detecting underspecifications
● verifying properties with assertions

In order to:

● analyze specifications (e.g. of file systems)

● analyze algorithms (e.g. linked list manipulation)

● solve problems in a declarative manner (e.g. Hanoi's tower)

