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Content of this lecture

These slides
* provide an overview of the language "Alloy"

* provide an overview of the different usage of Alloy:

* generate instances (e.g. test cases)
* detect overspecifications

* detect underspecifications

* verify properties

« See also "Alloy: A Quick Reference"
http://www.monperrus.net/martin/alloy-quick-ref.pdf
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tools will at last help software engineers ensure
the reliability of their designs
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What is Alloy?

Alloy is a tool to find conceptual bugs (retimplementation-bugs): domain

logic, communication protocols, emergent properties, etc.
A bug is a property which is not verified:

* No explicit property = no bug found

"No planes can be
allowed to land at the
same time"
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The intuition

The core idea of Alloy is transform a property and the
corresponding model into a first order logic formula:

ally:Y|!xr=y

= (((x Ar ) v (xAr )) A= ((xAr,.) v (XAr )) A

= (= ((xAr,) v (XAr ) A(xAr ) v (XAr))

and to verify this model with a standard SAT solver:
The formula is satisfiable:
x0=true
xl=false
r00=true

etc.
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Alloy

Generating instances with Alloy
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Alloy

Alloy consists of generating
instances of an object-
oriented model.



Your first Alloy Program: a WoW Map Generator

sig Island { }
sig Town { island : Island }

Islandl Islando

sig Road { —
(warcraft) Runrin$l
endl . TOWI’\, Eile Instance Theme Window
end2 : Town A EEE o
} Viz Dot XML Tree Theme Magiclayout Evaluator HMNext
:23; g Road0 Road2 Roadl
faCt { | lisland: 3
. . endln4nd2 |endl end2
no i,j: Island | some r : Road | ><d2 Qndl
i'=j and r.endl.island =i and r.end2.island =j rourz | [rowmo | [romrt
} ~'\'~\_\i-;_|_;,|-,.;L_,-'“'::;_|__:,|-,.;| island
\ /
run { } for 3

A basic Alloy model consists of signatures
and facts.



Alloy

Detecting overspecification with
Alloy (no instances)
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Overspecification: assumption

In case of overspecification,
there are no possible
instances. This appears even
in presence of slight
overspecification.
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A natural language specification (1)

A file system object has a parent

A directory is a special kind of file system object

A directory contains file system objects

There is one directory which is called the root

The root directory has no parent

12



// A file system object has a directory as parent
sig FSObject {
parent: Dir

¥

// A directory is a special kind of file system object

sig Dir extends FSObject {

// A directory contains file system objects
contents: set FSObject

¥

// There is one directory which is called the root
one sig Root extends Dir {}

// The root directory has no parent
fact RootProperty { no Root.parent }

run {} for 5

Overspecifications are detected with
the absence of instances.

13



* Overspecification are detected by "No Instance Found"

Executing "Run runs1”
Solver=satd) Bitwidth=4 MaxSeqg=4 SkolemDepth=1 Symmetry=20
246 vars., 24 prnimary vars. 334 clauses, 46ms.
Mo instance found. Predicate may be inconsistent. 67ms.
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// A file system object has a directory as parent ~ Java class \

sig FSObject<

parent : Dir - UML 1..1
¥

// A directory iW Java extends

sig Dir extends '

/f A directory CW ~ UML 0..*
contents: set ject

b

// There is one directory which is call singleton
one sig RoOOU extendas DIr { p

// The root directory has no parent fact = always true
fact .

run—{

¥

find instances

15
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The Fix

// R1: All file system objects but Root have a directory as parent
sig FSObject {
parent: lone Dir

¥

" UML 0..1

// A directory is a special kind of file system object

sig Dir extends FSObject {

// A directory contains file system objects
contents: set FSObject

¥

// There is one directory which is called the root
one sig Root extends Dir {}

// The root directory has no parent
fact RootProperty {

no Root.parent _ _
// see R1 Predicate logic

all t:FSObject | t not in Root implies one t.parent

b
run {}

16
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A natural language specification (2)

* A file system object can have a parent

A directory is a special kind of file system object

* A directory contains file system objects

* A file is a special kind of file system objects

* There is one special directory which is called the root and has no parent
* A directory is the parent of its contents

* Every file system object is in one directory

* A directory can not be in itself

* A directory can not be one of its ancestors

» It is possible to have directories containing several objects

» All file system objects must have one parent

Where is the bug?

17
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Alloy

Detecting Underspecifications
with Alloy (wrong instances)
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Underspecification: assumption

In case of underspecification,
wrong instances appear
quickly. The search strategies
of Alloy further fasten their
occurrences.
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Example 1

Specification:

* A file system object is in a directory

* A directory contains file system objects
* There is no cycle in the structure

Question: is it possible?

sig FSObject { parent: Dir }
sig Dir { contents: set FSObject } .
pred noCycle { all d:Dir | d not in d.”"parent } A transitive

// question closure is the set
run { some FSObject and noCycle } of all reachable
nodes.
Warning

The join operation here always yields an empty set.
Left type = {this/Dir}
Right type = {this/FSObject->this/Dir}

Alloy is a typed language, some bugs are caught at compile time.
Bug: instances of Dir have no field "parent”

Solution: add "extends Dir" )1
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Example 1

Specification:

* A file system object is in a directory

A directory is a file system object and contains file system objects
* There is no cycle in in the structure

Question: is it possible?

sig FSObject { parent: Dir }

sig Dir extends FSObject { contents: set FSObject }
pred noCycle { all d:Dir | d not in d.”parent }

// question

run { some FSObject and noCycle }
No instance found!

Bug: no concept of Root directory

Solution: add the missing concept and the associated facts

22



Example 1

Specification:
* A file system object is in a directory

A directory is a file system object and contains file system objects

« There is no cycle in in the structure

« There is on directory called Root which has no parent.

Question: is it possible?

sig FSObject { parent: Dir }
sig Dir extends FSObject { contents: set FSObject }
pred noCycle {

all d:Dir - Root | d not in d.”parent
}

one sig Root extends Dir {}

(Untitled 2) Bun run$m =g+
File Instance Theme Window

= E B 5

run { some FSObject and noCycle } ; S e e e s

; |ﬂarent 1 | Root :::::)parent

i

4] T | [y

23
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Example 1

Specification:

* A file system object is in a directory

A directory is a file system object and contains file system objects
 There is no cycle in in the structure

« There is on directory called Root which has no parent.

Question: it it enough?
sig FSObject { parent: lone Dir }

{Untitled 2) Bun run$l

Eile Instance Theme Window

3 A= A= -
sig Dir extends FSObject { contents: set FSObj. ==& = = 54

Viz Dot XML Tree Theme Magic Layout Evaluator

pred noCycle { Dir )cnments
; parent 1

all d:Dir - Root | d not in d.” parent ; /Amnw
}

2121 contents
one sig Root extends Dir {} § Q%

ntgnts
fact {no Root.parent} &

FaObject

run { some FSObject and noCycle } 9” 1 D]

24



. 0000000000000}
Example 1

Specification:

« A file system object is in a directory

A directory is a file system object and contains file system objects
 There is no cycle in in the structure

 There is on directory called Root which has no parent.

* A directory is the parent of its content

Question: it it enough?

fact { all d:Dir - Root | d not 1in d.”"parent }

fact { all d:Dir | all c:d.contents | d = c.parent }

[ (Untitled 2) Run run$1 - X
] heme Window

T
= A= g
=EE @ B8 oo
Next

Viz Dot XML Tree Theme Magic Layout Evaluator

contents: 2
parent: 2

FSObject

25



Example 1

* A file system object is in a directory

« A directory is a file system object and contains file system objects
* There is no cycle in in the structure

* There is on directory called Root which has no parent.

« A directory is the parent of its content

« All files but root are in the contents of its parent directory

Question: it it enough? YES (in a certain scope, by checking some instances)

fact { all f:FSObject - Root | £ 1in == E = R :

f.parent.contents } ngnm XML Tree Theme Magiclayout Eva
;| |contents: 4 FSObject Root
i |parent: 4
E arent/ tontents
co nts
parent

Dir2 Dirl

M dontents
C ents
parent

Dird
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The Final Specification

abstract sig FSObject { parent: lone Dir }

sig Dir extends FSObject { contents: set FSObject }

sig File extends FSObject {}

one sig Root extends Dir {}

fact {no Root.parent}

fact { all d:FSObject - Root | d not in d.”parent }

fact { all d:Dir | all c:d.contents | d = c.parent }
fact { all f:FSObject - Root | £ 1n f.parent.contents }

run { } for ©

27



Alloy

Verifying Properties
with Assertions

e & '
B
’ g
i el ol = -f...
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safe

si1g Gang { members : set Inmate }
sig Inmate { room: Cell }
sig Cell { }

// no room shared
pred safe {

no gl,g2: Gang | gl!=g2 and some (gl.members.room &
g2 .members.room)

} (Untitled"3) Checkcheck5ifar3
File Instance Theme Window
i E AE: E g @ g E rojection:
p r e d h app y { Viz Dot XML Tree Theme Magiclayout Evaluator HNext ‘ P d <t
all pl,p2 : Inmate | . |members: 2| qanga Gang0
// 1f they are in the same room | — members
// they are in the same gang § — [ mate matel
($happy_pl) ($happy_p2)
pl ° room - p2 * room room %m/oom
implies ~members[pl] = ~members|[p2] 5
Celll CellD
J ;
[4] Il [ | >||

check {safe implies happy } for 3

29
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Assertions

* An assertion derives/emerges from the rest of the world

* e.g. N predicates implies 1 predicate

* The N predicates will be in the implementation, not the
property itself

 Two ways of expressing assertions:

* check {safe implies happy } for 3 // anonymous
* named assertion:

assert safe_implies_happy {safe implies happy }
check safe_implies_happy for 3

30



Predicates

A predicate is a conditional fact.
It is used for searching for

particular instances, and for writing
assertions.

A predicate may have arguments.



Predicates

// predicate with argument

pred happylpl : Inmate] {
some pZ : Inmate - pl|
// 1f they are in the same room

// they are in the same gang

pl.room = p2.room
and ~members([pl] = ~members|[pZ]

J

// predicate used for searching for instances
run happy

// predicate used in assertions
check {safe i1mplies happy } for 3

32
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functions

A function is a side-effect free
helper.

It is used for reusing common
code.

33
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Functions

fun gangOf[pl : Inmate] : Gang {
~members [pl]

J

pred happylpl : Inmate] {
some pZ2 : Inmate - pl]
// 1f they are in the same room
// they are in the same gang
pl.room = p2.room
and gangOf[pl] = gangOf [p2]

34
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Summary

Alloy usages are:

* generating instances

* detecting overspecifications

* detecting underspecifications

* verifying properties with assertions

In order to:
* analyze specifications (e.g. of file systems)
* analyze algorithms (e.qg. linked list manipulation)

* solve problems in a declarative manner (e.g. Hanoi's tower)

46



