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Content of this lecture

These slides 
● provide an overview of the language "Alloy"
● provide an overview of the different usage of Alloy:

● generate instances (e.g. test cases)
● detect overspecifications
● detect underspecifications
● verify properties

● See also "Alloy: A Quick Reference"  
http://www.monperrus.net/martin/alloy-quick-ref.pdf

http://www.monperrus.net/martin/alloy-quick-ref.pdf
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What is Alloy?

Alloy is a tool to find conceptual bugs (not implementation bugs): domain 
logic, communication protocols, emergent properties, etc.

A bug is a property which is not verified:

● No explicit property = no bug found

"No planes can be 
allowed to land at the 
same time"
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The intuition

The core idea of Alloy is transform a property and the 
corresponding model into a first order logic formula:

and to verify this model with a standard SAT solver:

The formula is satisfiable:

x0=true

x1=false

r00=true

etc.



7

Generating instances with Alloy

Alloy
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Alloy consists of generating 
instances of an object-
oriented model.

Alloy
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sig Island {  }
sig Town { island : Island }
sig Road { 
  end1 : Town,
  end2 : Town
}

fact { 
no i,j: Island | some r : Road |  
  i!=j and r.end1.island =i and r.end2.island =j
}

run { } for 3 

Your first Alloy Program: a WoW Map Generator

A basic Alloy model consists of signatures 
and facts.
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Detecting overspecification with 
Alloy (no instances)

Alloy
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In case of overspecification, 
there are no possible 
instances. This appears even 
in presence of slight 
overspecification.

Overspecification: assumption
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A natural language specification (1)

● A file system object has a parent

● A directory is a special kind of file system object

● A directory contains file system objects

● There is one directory which is called the root

● The root directory has no parent
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// A file system object has a directory as parent
sig FSObject {
  parent: Dir
}

// A directory is a special kind of file system object
sig Dir extends FSObject { 
// A directory contains file system objects
  contents:  set FSObject 
}

// There is one directory which is called the root
one sig Root extends Dir {}

// The root directory has no parent
fact RootProperty { no Root.parent }

run {} for 5 

Overspecifications are detected with 
the absence of instances.
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● Overspecification are detected by "No Instance Found"
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// A file system object has a directory as parent
sig FSObject {
  parent : Dir
}

// A directory is a special kind of file system object
sig Dir extends FSObject { 
// A directory contains file system objects
  contents:  set FSObject 
}

// There is one directory which is called the root
one sig Root extends Dir {}

// The root directory has no parent
fact { no Root.parent }

run { 

}

~ Java class

~ Java extends

~ UML 0..*

singleton

fact = always true

find instances

~ UML 1..1
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// R1: All file system objects but Root have a directory as parent
sig FSObject {
  parent: lone Dir
}

// A directory is a special kind of file system object
sig Dir extends FSObject { 
// A directory contains file system objects
  contents:  set FSObject 
}

// There is one directory which is called the root
one sig Root extends Dir {}

// The root directory has no parent
fact RootProperty { 
no Root.parent
// see R1
all t:FSObject | t not in Root implies one t.parent
}

run {}

~ UML 0..1

Predicate logic

The Fix
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A natural language specification (2)

● A file system object can have a parent

● A directory is a special kind of file system object

● A directory contains file system objects

● A file is a special kind of file system objects

● There is one special directory which is called the root and has no parent

● A directory is the parent of its contents

● Every file system object is in one directory

● A directory can not be in itself

● A directory can not be one of its ancestors

● It is possible to have directories containing several objects

● All file system objects must have one parent

Where is the bug?
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Detecting Underspecifications 
with Alloy (wrong instances)

Alloy
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In case of underspecification, 
wrong instances appear 
quickly. The search strategies 
of Alloy further fasten their 
occurrences.

Underspecification: assumption
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Example 1

sig FSObject { parent: Dir }
sig Dir { contents: set FSObject }
pred noCycle { all d:Dir | d not in d.^parent }
// question
run { some  FSObject and noCycle }

Specification:

● A file system object is in a directory

● A directory contains file system objects

● There is no cycle in the structure

Question: is it possible?

Warning
The join operation here always yields an empty set.
Left type = {this/Dir}
Right type = {this/FSObject->this/Dir}

A transitive 
closure is the set 
of all reachable 
nodes.

Alloy is a typed language, some bugs are caught at compile time.
Bug: instances of Dir have no field "parent"
Solution: add "extends Dir"
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Example 1

sig FSObject { parent: Dir }

sig Dir extends FSObject { contents: set FSObject }

pred noCycle { all d:Dir | d not in d.^parent }

// question

run { some  FSObject and noCycle }

Specification:

● A file system object is in a directory

● A directory is a file system object and contains file system objects

● There is no cycle in in the structure

Question: is it possible?

No instance found!

Bug: no concept of Root directory 

Solution: add the missing concept and the associated facts
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Example 1

sig FSObject { parent: Dir }
sig Dir extends FSObject { contents: set FSObject }
pred noCycle { 
all d:Dir - Root | d not in d.^parent
}
one sig Root extends Dir {}

run { some  FSObject and noCycle }

Specification:

● A file system object is in a directory

● A directory is a file system object and contains file system objects

● There is no cycle in in the structure

● There is on directory called Root which has no parent.

Question: is it possible?
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Example 1

sig FSObject { parent: lone Dir }

sig Dir extends FSObject { contents: set FSObject }

pred noCycle { 

all d:Dir - Root | d not in d.^parent

}

one sig Root extends Dir {}

fact {no Root.parent}

run { some  FSObject and noCycle }

Specification:

● A file system object is in a directory

● A directory is a file system object and contains file system objects

● There is no cycle in in the structure

● There is on directory called Root which has no parent.

Question: it it enough?
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Example 1

fact {  all d:Dir - Root | d not in d.^parent }

fact { all d:Dir |  all c:d.contents | d = c.parent }

Specification:

● A file system object is in a directory

● A directory is a file system object and contains file system objects

● There is no cycle in in the structure

● There is on directory called Root which has no parent.

● A directory is the parent of its content

Question: it it enough?
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Example 1

fact {  all f:FSObject - Root | f  in 
f.parent.contents }

● A file system object is in a directory

● A directory is a file system object and contains file system objects

● There is no cycle in in the structure

● There is on directory called Root which has no parent.

● A directory is the parent of its content

● All files but root are in the contents of its parent directory

Question: it it enough? YES (in a certain scope, by checking some instances)
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The Final Specification

abstract sig FSObject { parent: lone Dir }

sig Dir extends FSObject { contents: set FSObject }

sig File extends FSObject {}

one sig Root extends Dir {}

fact {no Root.parent}

fact {  all d:FSObject - Root | d not in d.^parent }

fact { all d:Dir |  all c:d.contents | d = c.parent }

fact {  all f:FSObject - Root | f  in f.parent.contents }

run { } for 6
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Verifying Properties 
with Assertions

Alloy



29

sig Gang { members : set Inmate }
sig Inmate { room: Cell }
sig Cell { }

// no room shared
pred safe {
  no g1,g2: Gang | g1!=g2 and some (g1.members.room & 
g2.members.room)
}

pred happy {
  all p1,p2 : Inmate | 
   // if they are in the same room
   // they are in the same gang
   p1.room = p2.room 
implies ~members[p1] = ~members[p2]
}

check {safe implies happy } for 3

safe
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Assertions

● An assertion derives/emerges from the rest of the world
● e.g. N predicates implies 1 predicate
● The N predicates will be in the implementation, not the 

property itself
● Two ways of expressing assertions:

● check {safe implies happy } for 3 // anonymous
● named assertion:

assert safe_implies_happy {safe implies happy } 
check safe_implies_happy for 3
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Predicates

A predicate is a conditional fact.

It is used for searching for 
particular instances, and for writing 
assertions.

A predicate may have arguments.
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// predicate with argument
pred happy[p1 : Inmate] {
  some p2 : Inmate - p1| 
   // if they are in the same room
   // they are in the same gang
   p1.room = p2.room 
      and  ~members[p1] = ~members[p2]
}

// predicate used for searching for instances
run happy

// predicate used in assertions
check {safe implies happy } for 3

Predicates
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functions

A function is a side-effect free 
helper.

It is used for reusing common 
code.
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fun gangOf[p1 : Inmate] : Gang {
   ~members[p1] 
}

pred happy[p1 : Inmate] {
  some p2 : Inmate - p1| 
   // if they are in the same room
   // they are in the same gang
   p1.room = p2.room 
     and  gangOf[p1] = gangOf[p2]
}

Functions
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Summary

Alloy usages are:
● generating instances
● detecting overspecifications
● detecting underspecifications
● verifying properties with assertions

In order to:

● analyze specifications  (e.g. of file systems)

● analyze algorithms (e.g. linked list manipulation)

● solve problems in a declarative manner (e.g. Hanoi's tower)


