Lecture on

Automated Software Engineering

Alloy: Analyzing Software
Requirements, Design and Algorithms

Martin Monperrus, Ph.D.

version of Oct 15, 2012

Creative Commons Attribution License
Copying and modifying are authorized
as long as proper credit is given to the
author.

\\ Université

<

1 Lille1

Sciences et Technologies

The latest version of these slides can be found at: http://www.monperrus.net/martin/alloy-slides.pdf

http://www.monperrus.net/martin/
http://www.monperrus.net/martin/alloy-slides.pdf

- /]
Content of this lecture

These slides
* provide an overview of the language "Alloy"

* provide an overview of the different usage of Alloy:

* generate instances (e.g. test cases)
* detect overspecifications

* detect underspecifications

* verify properties

« See also "Alloy: A Quick Reference"
http://www.monperrus.net/martin/alloy-quick-ref.pdf

http://www.monperrus.net/martin/alloy-quick-ref.pdf

- /]
Content of this lecture

These slides
* provide an overview of the language "Alloy"

* provide an overview of the different usage of Alloy:

* generate instances (e.g. test cases)
* detect overspecifications

* detect underspecifications

* verify properties

« See also "Alloy: A Quick Reference"
http://www.monperrus.net/martin/alloy-quick-ref.pdf

http://www.monperrus.net/martin/alloy-quick-ref.pdf

http://alloy.mit.edu

Dependable
Software

PDesign

Computers fly our airliners and run most of the
world’s banking, communications, retail and
manufacturing systems. Now powerful analysis
tools will at last help software engineers ensure
the reliability of their designs

By Daniel Jackson

References:
* ALCOA: The Alloy constraint analyzer, 2000
+ Automating First-Order Relational Logic, 2000
* Finding bugs with a constraint solver, 2000
* A micromodularity mechanism, 2001

SCIENTIFIC AMERICAN B9
COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC. + Alloy: a lightweight object modelling notation, 2002

WWW.SCiam. com

+ Software Abstractions Logic, Language, and Analysis, 2006

. 0000000000000}
What is Alloy?

Alloy is a tool to find conceptual bugs (retimplementation-bugs): domain

logic, communication protocols, emergent properties, etc.
A bug is a property which is not verified:

* No explicit property = no bug found

"No planes can be
allowed to land at the
same time"

- /]
The intuition

The core idea of Alloy is transform a property and the
corresponding model into a first order logic formula:

ally:Y|!xr=y

= (((x Ar) v (xAr)) A= ((xAr,.) v (XAr)) A

= (= ((xAr,) v (XAr) A(xAr) v (XAr))

and to verify this model with a standard SAT solver:
The formula is satisfiable:
x0=true
xl=false
r00=true

etc.

.. _______000000_]
Alloy

Generating instances with Alloy

Northern Kalimdor

Mt Hyjal

Lentral Rallmaor

Yy The Maelstrom

S0Uthermn Rallmdaor

.. _______000000_]
Alloy

Alloy consists of generating
instances of an object-
oriented model.

Your first Alloy Program: a WoW Map Generator

sig Island { }
sig Town { island : Island }

Islandl Islando

sig Road { —
(warcraft) Runrin$l
endl . TOWI’\, Eile Instance Theme Window
end2 : Town A EEE o
} Viz Dot XML Tree Theme Magiclayout Evaluator HMNext
:23; g Road0 Road2 Roadl
faCt { | lisland: 3
. . endln4nd2 |endl end2
no i,j: Island | some r : Road | ><d2 Qndl
i'=j and r.endl.island =i and r.end2.island =j rourz | [rowmo | [romrt
} ~'\'~_\i-;_|_;,|-,.;L_,-'“'::;_|__:,|-,.;| island
\ /
run { } for 3

A basic Alloy model consists of signatures
and facts.

Alloy

Detecting overspecification with
Alloy (no instances)

. 0]
Overspecification: assumption

In case of overspecification,
there are no possible
instances. This appears even
in presence of slight
overspecification.

. 0]
A natural language specification (1)

A file system object has a parent

A directory is a special kind of file system object

A directory contains file system objects

There is one directory which is called the root

The root directory has no parent

12

// A file system object has a directory as parent
sig FSObject {
parent: Dir

¥

// A directory is a special kind of file system object

sig Dir extends FSObject {

// A directory contains file system objects
contents: set FSObject

¥

// There is one directory which is called the root
one sig Root extends Dir {}

// The root directory has no parent
fact RootProperty { no Root.parent }

run {} for 5

Overspecifications are detected with
the absence of instances.

13

* Overspecification are detected by "No Instance Found"

Executing "Run runs1”
Solver=satd) Bitwidth=4 MaxSeqg=4 SkolemDepth=1 Symmetry=20
246 vars., 24 prnimary vars. 334 clauses, 46ms.
Mo instance found. Predicate may be inconsistent. 67ms.

14

// A file system object has a directory as parent ~ Java class \

sig FSObject<

parent : Dir - UML 1..1
¥

// A directory iW Java extends

sig Dir extends '

/f A directory CW ~ UML 0..*
contents: set ject

b

// There is one directory which is call singleton
one sig RoOOU extendas DIr { p

// The root directory has no parent fact = always true
fact .

run—{

¥

find instances

15

- /]
The Fix

// R1: All file system objects but Root have a directory as parent
sig FSObject {
parent: lone Dir

¥

" UML 0..1

// A directory is a special kind of file system object

sig Dir extends FSObject {

// A directory contains file system objects
contents: set FSObject

¥

// There is one directory which is called the root
one sig Root extends Dir {}

// The root directory has no parent
fact RootProperty {

no Root.parent _ _
// see R1 Predicate logic

all t:FSObject | t not in Root implies one t.parent

b
run {}

16

.. _______000000_]
A natural language specification (2)

* A file system object can have a parent

A directory is a special kind of file system object

* A directory contains file system objects

* A file is a special kind of file system objects

* There is one special directory which is called the root and has no parent
* A directory is the parent of its contents

* Every file system object is in one directory

* A directory can not be in itself

* A directory can not be one of its ancestors

» It is possible to have directories containing several objects

» All file system objects must have one parent

Where is the bug?

17

. 0]
Alloy

Detecting Underspecifications
with Alloy (wrong instances)

. 0]
Underspecification: assumption

In case of underspecification,
wrong instances appear
quickly. The search strategies
of Alloy further fasten their
occurrences.

. 0]
Example 1

Specification:

* A file system object is in a directory

* A directory contains file system objects
* There is no cycle in the structure

Question: is it possible?

sig FSObject { parent: Dir }
sig Dir { contents: set FSObject } .
pred noCycle { all d:Dir | d not in d.”"parent } A transitive

// question closure is the set
run { some FSObject and noCycle } of all reachable
nodes.
Warning

The join operation here always yields an empty set.
Left type = {this/Dir}
Right type = {this/FSObject->this/Dir}

Alloy is a typed language, some bugs are caught at compile time.
Bug: instances of Dir have no field "parent”

Solution: add "extends Dir")1

. 0000000000000}
Example 1

Specification:

* A file system object is in a directory

A directory is a file system object and contains file system objects
* There is no cycle in in the structure

Question: is it possible?

sig FSObject { parent: Dir }

sig Dir extends FSObject { contents: set FSObject }
pred noCycle { all d:Dir | d not in d.”parent }

// question

run { some FSObject and noCycle }
No instance found!

Bug: no concept of Root directory

Solution: add the missing concept and the associated facts

22

Example 1

Specification:
* A file system object is in a directory

A directory is a file system object and contains file system objects

« There is no cycle in in the structure

« There is on directory called Root which has no parent.

Question: is it possible?

sig FSObject { parent: Dir }
sig Dir extends FSObject { contents: set FSObject }
pred noCycle {

all d:Dir - Root | d not in d.”parent
}

one sig Root extends Dir {}

(Untitled 2) Bun run$m =g+
File Instance Theme Window

= E B 5

run { some FSObject and noCycle } ; S e e e s

; |ﬂarent 1 | Root :::::)parent

i

4] T | [y

23

. 0000000000000}
Example 1

Specification:

* A file system object is in a directory

A directory is a file system object and contains file system objects
 There is no cycle in in the structure

« There is on directory called Root which has no parent.

Question: it it enough?
sig FSObject { parent: lone Dir }

{Untitled 2) Bun run$l

Eile Instance Theme Window

3 A= A= -
sig Dir extends FSObject { contents: set FSObj. ==& = = 54

Viz Dot XML Tree Theme Magic Layout Evaluator

pred noCycle { Dir)cnments
; parent 1

all d:Dir - Root | d not in d.” parent ; /Amnw
}

2121 contents
one sig Root extends Dir {} § Q%

ntgnts
fact {no Root.parent} &

FaObject

run { some FSObject and noCycle } 9” 1 D]

24

. 0000000000000}
Example 1

Specification:

« A file system object is in a directory

A directory is a file system object and contains file system objects
 There is no cycle in in the structure

 There is on directory called Root which has no parent.

* A directory is the parent of its content

Question: it it enough?

fact { all d:Dir - Root | d not 1in d.”"parent }

fact { all d:Dir | all c:d.contents | d = c.parent }

[(Untitled 2) Run run$1 - X
] heme Window

T
= A= g
=EE @ B8 oo
Next

Viz Dot XML Tree Theme Magic Layout Evaluator

contents: 2
parent: 2

FSObject

25

Example 1

* A file system object is in a directory

« A directory is a file system object and contains file system objects
* There is no cycle in in the structure

* There is on directory called Root which has no parent.

« A directory is the parent of its content

« All files but root are in the contents of its parent directory

Question: it it enough? YES (in a certain scope, by checking some instances)

fact { all f:FSObject - Root | £ 1in == E = R :

f.parent.contents } ngnm XML Tree Theme Magiclayout Eva
;| |contents: 4 FSObject Root
i |parent: 4
E arent/ tontents
co nts
parent

Dir2 Dirl

M dontents
C ents
parent

Dird

.~~~]
The Final Specification

abstract sig FSObject { parent: lone Dir }

sig Dir extends FSObject { contents: set FSObject }

sig File extends FSObject {}

one sig Root extends Dir {}

fact {no Root.parent}

fact { all d:FSObject - Root | d not in d.”parent }

fact { all d:Dir | all c:d.contents | d = c.parent }
fact { all f:FSObject - Root | £ 1n f.parent.contents }

run { } for ©

27

Alloy

Verifying Properties
with Assertions

e & '
B
’ g
i el ol = -f...

-]
safe

si1g Gang { members : set Inmate }
sig Inmate { room: Cell }
sig Cell { }

// no room shared
pred safe {

no gl,g2: Gang | gl!=g2 and some (gl.members.room &
g2 .members.room)

} (Untitled"3) Checkcheck5ifar3
File Instance Theme Window
i E AE: E g @ g E rojection:
p r e d h app y { Viz Dot XML Tree Theme Magiclayout Evaluator HNext ‘ P d <t
all pl,p2 : Inmate | . |members: 2| qanga Gang0
// 1f they are in the same room | — members
// they are in the same gang § — [mate matel
($happy_pl) ($happy_p2)
pl ° room - p2 * room room %m/oom
implies ~members[pl] = ~members|[p2] 5
Celll CellD
J ;
[4] Il [| >||

check {safe implies happy } for 3

29

-]
Assertions

* An assertion derives/emerges from the rest of the world

* e.g. N predicates implies 1 predicate

* The N predicates will be in the implementation, not the
property itself

 Two ways of expressing assertions:

* check {safe implies happy } for 3 // anonymous
* named assertion:

assert safe_implies_happy {safe implies happy }
check safe_implies_happy for 3

30

Predicates

A predicate is a conditional fact.
It is used for searching for

particular instances, and for writing
assertions.

A predicate may have arguments.

Predicates

// predicate with argument

pred happylpl : Inmate] {
some pZ : Inmate - pl|
// 1f they are in the same room

// they are in the same gang

pl.room = p2.room
and ~members([pl] = ~members|[pZ]

J

// predicate used for searching for instances
run happy

// predicate used in assertions
check {safe i1mplies happy } for 3

32

-]
functions

A function is a side-effect free
helper.

It is used for reusing common
code.

33

- 7]
Functions

fun gangOf[pl : Inmate] : Gang {
~members [pl]

J

pred happylpl : Inmate] {
some pZ2 : Inmate - pl]
// 1f they are in the same room
// they are in the same gang
pl.room = p2.room
and gangOf[pl] = gangOf [p2]

34

. ________000000000000000]
Summary

Alloy usages are:

* generating instances

* detecting overspecifications

* detecting underspecifications

* verifying properties with assertions

In order to:
* analyze specifications (e.g. of file systems)
* analyze algorithms (e.qg. linked list manipulation)

* solve problems in a declarative manner (e.g. Hanoi's tower)

46

