
HAL Id: hal-00965410
https://inria.hal.science/hal-00965410

Submitted on 25 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Do the Fix Ingredients Already Exist? An Empirical
Inquiry into the Redundancy Assumptions of Program

Repair Approaches
Matias Martinez, Westley Weimer, Martin Monperrus

To cite this version:
Matias Martinez, Westley Weimer, Martin Monperrus. Do the Fix Ingredients Already Exist? An
Empirical Inquiry into the Redundancy Assumptions of Program Repair Approaches. ICSE - 36th
IEEE International Conference on Software Engineering - New Ideas and Emerging Results Track,
Jun 2014, Hyderabad, India. �10.1145/2591062.2591114�. �hal-00965410�

https://inria.hal.science/hal-00965410
https://hal.archives-ouvertes.fr

Do the Fix Ingredients Already Exist?
An Empirical Inquiry into the Redundancy Assumptions of

Program Repair Approaches

Matias Martinez† Westley Weimer‡ Martin Monperrus†

† University of Lille & INRIA, France ‡ University of Virginia, USA

ABSTRACT

Much initial research on automatic program repair has fo-
cused on experimental results to probe their potential to find
patches and reduce development effort. Relatively less effort
has been put into understanding the hows and whys of such
approaches. For example, a critical assumption of the Gen-
Prog technique is that certain bugs can be fixed by copying
and re-arranging existing code. In other words, GenProg as-
sumes that the fix ingredients already exist elsewhere in the
code. In this paper, we formalize these assumptions around
the concept of “temporal redundancy”. A temporally redun-
dant commit is only composed of what has already existed in
previous commits. Our experiments show that a large pro-
portion of commits that add existing code are temporally
redundant. This validates the fundamental redundancy as-
sumption of GenProg.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Experimentation

Keywords

Automatic program fixing; automatic software repair; min-
ing software repositories

1. INTRODUCTION
To some extent, each program repair technique is based

on an underlying assumption. GenProg’s “secret sauce” [12,
7] is the assumption that large programs contain the seeds
of their own repair and thus that rearrangements of existing
statements can fix most bugs. This redundancy assump-
tion is also behind four out of PAR’s ten repair templates
[5]. By contrast, SemFix [11] makes different assumptions:
it is based on the idea that some bugs can be repaired by

To appear in the Proceedings of the 2014 International Conference on Soft-

ware Engineering, track New Ideas and Emerging Results (ICSE NIER

2014)

changing only one variable assignment or if conditional ex-
pression. Although extensive empirical evaluations of the
bug fixing powers and costs of these techniques have been
carried out, less work has focused on exploring or validating
such fundamental assumptions.

In this paper we focus on the assumptions made by tech-
niques like PAR and GenProg, and ask whether it makes
sense to re-arrange existing code or code changes to fix bugs.
We formalize our investigation by defining a concept of“soft-
ware temporal redundancy”. A commit is said to be tem-
porally redundant if it is only a re-arrangement of the code
that has already existed in previous commits. We provide
further insight into the problem by breaking down existing
code along multiple dimensions, including the granularity
at which it is considered (e.g., line-level vs. token-level) and
the locality at which it is found (e.g., in the same file vs.
anywhere in the program).

We measure temporal redundancy on a dataset of six
open-source Java applications. For instance, at token level,
we find that 31-52% of commits are temporally redundant.
Our results show that a substantial fraction of software evo-
lution takes place in a“closed world”, with no creation of new
material. To our knowledge, this paper is the first empirical
quantification linking such evidence to automated program
repair.

Our experiments enable us to understand the foundational
assumptions of program repair approaches based on redun-
dancy such as GenProg or PAR. First, we validate the re-
dundancy assumption: it does makes sense to fix defects
by rearranging existing statements. Second, we find that
different assumptions about how patches should be formed
are significant: depending on the way one picks code from
elsewhere in the program, the search space is different in
terms of size and potential for success. Those results are
directly actionable for improving such automated program
repair techniques. For example, our results indicate that
only considering local redundancy at the line level would
decrease the repair time without a similar reduction in suc-
cess potential.

To sum up, our contributions are:

• the definition and formalization of software temporal
redundancy;

• an experimental protocol to measure software tempo-
ral redundancy using versioning data;

• an empirical validation of the redundancy assumption
of some program repair approaches on 16071 commits
of open-source software applications;

• an empirical analysis on the relation between the way
existing redundant code is selected for use in patches
and the structure of the underlying search space.

2. SOFTWARE TEMPORAL REDUNDANCY
Research in software evolution uses time as a primary fo-

cus. For most software projects, software evolution artifacts
are captured by version control systems (e.g. CVS, SVN or
GIT). In this section, we present a new commit-level soft-
ware evolution metric called “temporal redundancy”.

Commits.
A commit in a version control system consists of new file

versions. Conceptually, a commit can be viewed in two ways:
as a set of file pairs (before and after the commit), or as a
set of changes (applied to the version before the commit to
obtain the version after it).

In this paper, we use this change-based view of commits.
We consider that a commit adds and/or deletes new source
code fragments. An update is considered as the combination
of a deletion and an addition. We do not consider commits
done on other artifacts than source code.

Fragment Redundancy.
We use fragment to denote a substring of source code.

For instance, the source code line “for (int i=0;i<n;i++)”
is a fragment. Fragments are always defined according to a
level of granularity. In this paper we consider two different
levels: lines (as separated by line breaks) and tokens (as
separated by lexing rules).

A fragment F is snapshot redundant at time T if another
instance of that same fragment F exists elsewhere in the pro-
gram at time T . This is the redundancy studied by Gabel
and Su [1] and used by GenProg [12]. In this paper we con-
sider a richer notion of redundancy that includes historical
context.

A fragment F is temporally redundant at time T if that
same fragment F has already been seen during the history
of the software under analysis (i.e., at time T ′ < T). For
instance, literal “42” might be added in version #1, be re-
moved in version #2 and reused again in version #3. In the
commit of version #3, the “42” fragment is temporally re-
dundant. Thus, in this paper, once a fragment has appeared
it is always subsequently viewed as a potential source of re-
dundancy. We consider the first version of a program to be
created by insertions from an empty initial program.

Commit Redundancy.
A source code commit is composed of added and/or deleted

fragments. Using a cooking metaphor, the added fragments
are the “ingredients” of the commit.

We define a temporally redundant commit as a commit
for which all added fragments are (individually) temporally
redundant. More formally, we define a commit Cj performed
at the time Tj as a set Sj of added fragments and a set Rj

of removed fragments. Let C be the set of all commits for a
program. Then a temporally redundant commit Cj satisfies

∀f ∈ Sj | ∃Ci ∈ C| Ti < Tj ∧ f ∈ Si

For such commits, no new fragments are invented and
no fresh material is introduced: the commit is only a re-

arrangement of insertions that have already been seen in
previous commits.

Scope of Temporal Redundancy.
A fragment is temporally redundant if that same fragment

appeared in a previous commit. This kind of redundancy has
a global scope: the location of the previous fragment instance
does not matter.

We now define a more restricted local scope notion of tem-
poral redundancy. A fragment is locally temporally redun-
dant if that same fragment has been used in a previous com-
mit to the same file.

For example, consider two files, F1 and F2, each containing
3 fragments: F1 = {a, b, c}, F2 = {d, e, f}. Suppose commit
C1 adds fragment c to file F2. For that commit, fragment c
is global temporally redundant (already available in F1), but
not locally temporally redundant (never previously available
in F2). Suppose commit C2 introduces another version of F2

replacing fragment e with d. In that commit, fragment d is
locally redundant (since d was previously available in F2).

3. MEASURING REDUNDANCY
We now present an experimental design to measure the

fraction of relevant commits to a program that are tempo-
rally redundant.

Experimental Protocol.
Given a level of granularity and a scoping level, our ex-

perimental protocol to measure the temporal redundancy of
the evolution of a program consists of the following phases:

a) Retrieving commits. All commits of the program under
analysis are collected from the repository.

b) Filtering commit files. Only commits to executable
code are retained; commits to test cases are discarded.

c) Fragmenting commits. We split each relevant file into
fragments at a given level of granularity (e.g., lines or to-
kens). This results in a before-commit and an after-commit
sequence of fragments. We use the Myers differencing algo-
rithm [9] to compare both fragment sequences and obtain
the added fragments of the commit.

d) Filtering fragments. We filter out whitespace and com-
ments. In this paper we are only interested in the evolution
of executable code and not in indentation or documentation.

e) Selecting acceptable commits. We select those commits
that introduce at least one fragment after filtering. We call
such commits acceptable.

f) Indexing fragments. We consider each added fragment
in each acceptable commit in ascending temporal order. If a
fragment has not been encountered previously at the given
scoping level (i.e., global or local), we index it with the date
of its first introduction.

g) Measuring temporal redundancy. The temporal redun-
dancy of the entire program’s evolution is the fraction of
acceptable commits that are temporally redundant (see Sec-
tion 2). For example, a temporal redundancy of 0.1 means
that 10% of acceptable commits are temporally redundant
commits.

Dataset.
We use six open-source Java projects to measure the tem-

poral redundancy. They are: Apache Log4j, JUnit, Pico-
container, Apache Commons Collections, Apache Commons

Table 1: The temporal redundancy of six open-source applications.

Program Acceptable
Commits

Line granularity Token granularity
Global Local Global Local

Temporal

redundancy

Pool

Size

Temporal

redundancy

Pool

Size

Temporal

redundancy

Pool

Size

Temporal

redundancy

Pool

Size

log4 1687 9% 43313 6% 57 39% 14294 19% 71
junit 713 17% 8855 16% 18 43% 3256 29% 72.5
pico 157 3% 16911 2% 22.5 31% 6273 8% 46
collections 1019 7% 25406 4% 35 52% 4163 23% 85.5
math 2210 6% 69943 4% 37 45% 20742 18% 100.5
lang 1290 8% 22330 6% 63 50% 6692 29% 98
C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10

Math, and Apache Commons Lang. The inclusion criterion
is as follows: the Apache projects were used in previous
research on automatic program repair [5], while the remain-
ing two are Java projects mentioned in previous research on
software evolution [3]. After applying the filters presented
above on the 16071 commits of the dataset, we obtain 7076
acceptable commits.

4. EMPIRICAL RESULTS
We now present our empirical results on the temporal re-

dundancy of software (as defined in Section 2) following the
experimental design presented in Section 3.

4.1 Line-Level Temporal Redundancy
Research question: What is the amount of line-based tem-

poral redundancy?
For each application of our dataset, we measured the total

number of acceptable commits within the analysis timespan
(the complete data is available at http://goo.gl/k0rZWc)
and the global-scope line-level temporal redundancy. Columns
#2 and #3 of Table 1 report the results.

For instance, for log4j (the first row), there are 1687 com-
mits which add at least one executable line. Only 9% of
those 1681 are temporally redundant commits.

Overall, at the level of lines, 3–17% of the accepted com-
mits are temporally redundant commits. Their basic ingre-
dients are only previously-inserted code.

This has additional implications for automatic repair and
code synthesis: for synthesizing those commits, the search-
space has a finite number of atomic building blocks (previously-
observed line-level fragments). Theoretically, a redundancy-
based approach should be able to synthesize all the temporally-
redundant commits.

The interval 3–17% is large and the reasons behind this
variation are not obvious. One reason could be that the
commit conventions used by the developers of a project are
different. For instance, some projects prefer to have small
and atomic commits (one bug fix or feature per commit).
Other projects are less restrictive on this point. This has a
direct impact on the redundancy: small and atomic commits
are more likely to be redundant. A deeper analysis of this
question is future work.

4.2 Token-Level Temporal Redundancy
Research question: Is there a difference between line-based

and token-based temporal redundancy?
Before answering this question, we note that, analytically,

all temporally redundant commits at the level of lines are

necessarily temporally redundant commits at the level of
tokens. Furthermore, a unique new line might be exclusively
composed of existing tokens. Consequently, the token-based
temporal redundancy must be equal to or greater than line-
based temporal redundancy. We now measure the temporal
redundancy at the line and token level.

Table 1 reports global scope line-level (column #3) and
token-level temporal redundancy (column #7). For instance,
in log4j, there is a line-level temporal redundancy of 9% but
a token-level redundancy of 39%. Overall, at the token level,
29–52% of commits are temporally redundant.

For all projects, token-based temporal redundancy ex-
ceeds line-based. This follows from the analytical argument
above and gives confidence in the experiment’s construct
validity.

Overall, token-level temporal redundancy (between 29% and
52%) is much higher than the line-level temporal redundancy.

This is very good news. For automated repair and code
synthesis, a high temporal redundancy implies a smaller
search space. This holds for both the line and token level
of granularity. Our token-level temporal redundancy mea-
surements imply that for between 29% and 52% of accepted
commits, synthesis and repair need never invent a new to-
ken. For instance, repair or synthesis of arithmetic code
need only consider recombining existing literals and opera-
tions for one-third to one-half of commits.

We thus propose that the repair search space is com-
posed of two components: the search space of fragments
(the atomic building blocks) and the search space of their
combinations. Our experiment enables us to precisely mea-
sure the former: we can count the total number of fragments
seen up to a given point in time. We call this a fragment
pool. There is one fragment pool per level of granularity.
This is conceptually similar to the pool of four DNA bases
or the pool of amino acids in biology.

Table 1 gives the size of the global scope fragment pool for
line-level (column #4) and token-level (column #8) analy-
ses. For instance, in the considered slice of history of log4j,
there are 43313 different lines and 14294 different tokens
that are involved in the software evolution. For all applica-
tions under study, the token pool at the point in time of the
last commit is much smaller than the line pool.

For automated repair or code synthesis, there is a tension
between working with the line pool or the token pool. To
some extent, the temporally redundant commits correspond
to the number of commits that can be synthesized. With
the line pool, the combination of lines is much smaller (the
combination space is smaller) but fewer commits can be syn-
thesized (∼10%). With the token pool, more commits can

be synthesized (∼40%), but at the price of exploring a much
bigger combination space.

4.3 Redundancy Scope Experiment
Research question: Do file scope restrictions impact the

amount of temporal redundancy?
We now measure the temporal redundancy available at

the local scope in the same file (as defined in Section 2).
Table 1 reports global and local scope temporal redun-

dancy in our dataset. For each granularity, there is one col-
umn “Global” and one column “Local” corresponding to the
different scope. For instance, at the line level, column #3
is the temporal redundancy at the global scope and column
#5 gives it when considering a local scope.

As discussed in Section 4.1, at the line granularity, there
are between 3% and 17% of temporally redundant commits
at the global scope. At the local scope, there are between
2% and 16%.

The temporal redundancy of both scopes is of the same
order of magnitude. In all projects, more than half of the
temporally redundant commits actually have local temporal
redundancy. Consequently, at line granularity, most of the
temporal redundancy is localized in the same file.

At token-level granularity, the results are similar: we find
a large amount of token-level local-scope temporal redun-
dancy. Tokens are likely to be reused in commits impacting
the same file. This further indicates that the fragment lo-
cality matters during software evolution. We note that the
difference of redundancy between global and local scopes is
slightly higher at the token level (col. #7 vs #9) than at
the line level (col. #3 vs #5).

This is again a promising result with respect to the search
space of automatic repair or synthesis. First, at the line
level, the local scope pool is able to seed the same order of
magnitude of commits as the global one. In other words, it
is almost as fertile as the global pool. Second, when one con-
siders the local scope pool, the search space is much smaller.
For instance, for log4j, the median local pool size at the
line level is 57 lines, compared to 43313 at the global scope
level. Restricting attention to the local scope reduces the
search space greatly while still enabling the synthesis of a
large number of commits. Those results are directly action-
able for improving GenProg and other redundancy-based
approaches: our results indicate that only considering local
redundancy would decrease the repair time while keeping a
high repair success potential. This is in line with our body
of previous experiments.

5. RELATED WORK
Some work on code clone devetion also focuses on soft-

ware redundancy, studying the differences between line- and
token-level granularity [4]. Kim et al. [6] considered code
clones via a temporal perspective, linking clones together
across versions. By contrast, we study whether changes only
contain existing code. Most importantly, a change composed
of many redundant fragments may not be a clone in itself:
each redundant fragment could come from different, unre-
lated, locations or appear in a rearranged order.

In previous work [8], we discussed the topology of the
repair space and efficient manners to navigate it. In this
paper, we focus on the relation between commits and the
repair space, which has not been previously addressed.

Gabel and Su [1] studied the uniqueness of source code.
Their “syntactic redundancy”calculates the degree to which
portions of software applications are redundant. Hindle and
colleagues [2] studied the repetitiveness and predictability
of code. Both consider software redundancy from a spa-
tial viewpoint. By contrast, we study temporal redundancy.
Our measures are not present in, and cannot be inferred
from, their experiments.

Nguyen et al. [10] presented a study of repetitiveness of
code changes in software evolution. Where they measure the
repetitiveness of code changes by abstracting over commits
and literals, we measure the redundancy of code changes at
the commit level considering real, non-abstracted code (e.g.,
we care about the actual values of literals).

6. CONCLUSION
In this paper, we define a notion of software temporal

redundancy and empirically measure its presence in source
code. For example, as many as 52% of commits are com-
posed entirely of previously-existing tokens. Our results
have direct application to automated program repair. For
example, we find that searches for line-level repairs can fo-
cus on a single file, dramatically reducing the search space
without substantially reducing repair success potential.

Our future work will focus on measuring temporal redun-
dancy on bug fix commits and on studying different gran-
ularities beyond lines and tokens (e.g. at the AST level,
focusing on some kind of source code elements).

7. ACKNOWLEDGMENTS
This research is done with support from EU Project Diver-

sify FP7-ICT-2011-9 #600654 and the NSF (SHF-0905236,
CCF-1116289, CCF-0954024), AFOSR (FA9550-07-1-0532,
FA9550-10-1-0277), and DARPA (P-1070-113237). We thank
Maxence G. de Montauzan and Sylvain Magnier for their
participation to the experimentation.

8. REFERENCES

[1] M. Gabel and Z. Su. A study of the uniqueness of
source code. In Foundations of Software Engineering,
2010.

[2] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and
P. Devanbu. On the naturalness of software. In
International Conference on Software Engineering,
2012.

[3] H. Kagdi, M. Collard, and J. Maletic. A survey and
taxonomy of approaches for mining software
repositories in the context of software evolution.
Journal of Software Maintenance and Evolution:
Research and Practice, 19(2), 2007.

[4] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a
multilinguistic token-based code clone detection
system for large scale source code. IEEE Transactions
on Software Engineering, 28(7), 2002.

[5] D. Kim, J. Nam, J. Song, and S. Kim. Automatic
patch generation learned from human-written patches.
In Proceedings of the International Conference on
Software Engineering, 2013.

[6] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
empirical study of code clone genealogies. SIGSOFT
Softw. Eng. Notes, 30(5), 2005.

[7] C. Le Goues, M. Dewey-Vogt, S. Forrest, and
W. Weimer. A systematic study of automated
program repair: Fixing 55 out of 105 bugs for $8 each.
In Proceedings of the International Conference on
Software Engineering, 2012.

[8] M. Martinez and M. Monperrus. Mining software
repair models for reasoning on the search space of
automated program fixing. Empirical Software
Engineering, -, 2013.

[9] E. W. Myers. An o(nd) difference algorithm and its
variations. Algorithmica, 1:251–266, 1986.

[10] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N.
Nguyen, and H. Rajan. A study of repetitiveness of
code changes in software evolution. In Automated
Software Engineering, 2013.

[11] H. D. T. Nguyen, D. Qi, A. Roychoudhury, , and
S. Chandra. SemFix: Program Repair via Semantic
Analysis. In Proceedings of the International
Conference on Software Engineering, 2013.

[12] W. Weimer, T. Nguyen, C. L. Goues, and S. Forrest.
Automatically finding patches using genetic
programming. In Proceedings of the International
Conference on Software Engineering, 2009.

