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This documents presents an introduction to empirical software engineering. It has been first
prepared for a course at EJCP ZOIEB then reworked for EJCP 2016.

This document will evolve, I would thus appreciate your feedback.
— Martin Monperrus

Background: see http://www.monperrus.net/martin/about+me
Previous work in empirical software engineering: seehttp://www.monperrus.net/martin/
publications

1 Science and Engineering
The classical difference between science and engineering:

* Science is about observation, explanation.

* Engineering is about creation and optimization of tools.

There is no hierarchy, both are beautiful:
* Science is curiosity driven.

* Engineering is utility driven.

But there are profound links between both:

* Science: needs new tools (particle collider, Galileo’s telescope)
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* Engineering: needs observation and explanation on phenomena resulting from new
tools.

Software engineering research sometimes falls short on the utility side.
e Unreasonable assumptions.
* No applicability.

* No empirical validation.

2 ATentative Definition of Empirical Software Engineering

Software engineering is dual. Literally, software engineering is the creation and maintenance
of software. But from a research perspective, software engineering is the body of knowledge
about the creation and maintenance of software and about the phenomena underlying and
emerging from those two activities.

* software engineering: creation and maintenance of actual software

* software engineering research: tools to create software, understanding of the nature of
software and its usage.

Empirical software engineering is a research area concerned with the empirical observation
of software engineering artifacts and the empirical validation of software engineering theo-
ries and assumptions. Subfields of software engineering that are accustomed to empirical
research comprise software evolution, software maintenance and mining software reposi-
tories.

¢ Observation of artifacts.
¢ Validation of tools.
e Validation of methodologies.

* Validation of assumptions.

For example:

* Observation of artifacts: What is distribution of software dependencies?
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Figure 1: A partial conceptual map of empirical software engineering

* Explanation of phenomena: Why is the distribution exponential? [10]
* Validation of tools: Does static analysis of buffer overflows work in practice?
* Validation of methodologies: Is pair-programming effective?

e Validation of assumptions: Can an average programmer write a specification in linear
temporal logic?

Empirical software engineering starts with a good question:
* Is the assumption of independence in N-version programming true? [8]
* Is static typing really good? [7]
e What is the diversity of module usages?[9]
* Does Github change something in open-source processes? [2]

* <Your questions>

There are good, so-what and bad questions. A good question has at least one of:
* aclear answer.

¢ triggers new questions.



¢ an actionable answer.

* asurprising result (and why not a fascinating one).

You often read reviews like: “Nice paper, well-written and interesting results but the results
are not actionable”. In ESE, an answer is said to be actionable if the answer leads to (“engi-
neering forever”):

* the creation of a new tool
* the improvement of existing tools

 the improvement of existing development and engineering processes

Empirical research can be applied to all artifacts of the software engineering process:
* Code (source, binary)
* Version control systems
¢ Bugreports
¢ Documentation
e Communication traces (e.g. emails, forums, Stackoverflow)
* Design documents
* Execution traces

* Configuration files

3 Types of empirical software engineeering

A controlled experiment “is an investigation of a testable hypothesis where one or more in-
dependent variables (treatment) are manipulated to measure their effect on one or more de-
pendent variables” [3]. For example using a tool vs not using a tool. See the TSE survey on
this topic [13].

* a hypothesis

¢ tasks



* subjects (who?)

A concrete example: “Software Systems as Cities: A Controlled Experiment” [14].

* 5 questions, incl “Does the use of CodeCity increase the correctness of the solutions to
program comprehension tasks, compared to non-visual exploration tools, regardless of
the object system’s size?”

* 10 tasks, e.g. “Locate all the unit test classes of the system and identify the convention
(or lack thereof) used by the developers to organize the tests”

* subjects: 6 locations, e.g. “Bologna I. 8 professionals with 4-10 years of experience.”

e The answer is yes.

“An experimental evaluation of the assumption of independence in multiversion program-
ming” (8]

* RQ: are bugs independent?
¢ 1 task (implement a missile interception decision system
* subjects: 27 student programmers

* The answer is no: “We conclude that the model does not hold. However, clearly the
only potential problem with the model is that it is derived from the assumption of in-
dependent failures. Thus, we reject this assumption.”

A controlled experiment is a child of reductionism, which advocates to constantly seek and
isolate simple laws and effects. But, sometimes the phenomenon under study is too complex,

* some effects happen only at a certain size (10 developers, 100000L.OC, etc)
* some effects happen only on a certain time frame (code decay after 5 years)

* too many and uncontrolled independent variables (programmer background, applica-
tion domain)

Even if a controlled experiment is possible:

* it may be very costly (pay real developers for 2 months?)

ecology,
astronomy

the classical
“student
subject”
problem



* it may clash with the duration and requirements of a PhD (short term results and pub-
lications)

A case study is “an empirical method aimed at investigating contemporary phenomena in

their context” [12]. AMuch
- . o confusion.
 Descriptive case study: portraying a situation or phenomenon. Different
* Exploratory case study: finding out what is happening, seeking new insights and gen- from
erating ideas and hypotheses for new research. colloquial
meaning
* Confirmatory & Falsifying case study: testing existing theories “worked
example”
The steps of for setting up case studies (Five of [12] plus one): be agile!

* set up objectives and research questions (case study design)

* selection of cases (purposive sampling, extreme/critical/paradigmatic cases) extreme is a
revealer

* prepare what and how the data should be collected

e collect the data

* analyze the data

* reporting

An example, “Pair Programming and Software Defects — A Large, Industrial Case Study” [1]
* project large Italian manufacturing company (application domain?)

* 5 RQs (table 11): Is there a relationship between the usage of pair-programming and
the defect rate in the code?

* 6 types of data (Table 12): effort, PP configuration, work item, changelog.

* 39 defects, 144 user story implementations

» Zero-inflated Poisson Regression (ZIPR), Mann-Whitney, Kolmogorov-Smirnov
* There is a slight effect of PP on reducing defects

* My opinion: does it improve code ownership?



On this topic, I recommend the excellent reading “Five misunderstandings about case-study
research” [5]. Excerpts:

* Misunderstanding: concrete, practical-{eontext-dependent)-knowledgeislessvaluable

than general, theoretical (context-independent) knowledge : no depth only comes with
context.

* Misunderstanding: One-cannotgeneralize-onthe-basis-efanindividual-ease; therefore,

the case study cannot contribute to scientific development: no, falsification requires a
single example.

* Misunderstanding: Fhe-ease-study-contains-a-biastoward-verification, that is, a ten-

dency to confirm the researcher’s preconceived notions: no, not more than with other
techniques.

* Misunderstanding:

aﬂd%heeﬂe&eﬂfhebaﬂ&efspeﬂﬁeeases no, a good narrative can have amuch blgger

impact. (see the excellent paper “My hairiest bug war stories” [4])

A survey is the study of the characteristics of a broad population of individuals [3].
* Terminology: A\ Different from common meaning of “literature survey”.
* A collection of standardized information from a specific population [12]
* Emphasis on large sample (as opposed to case study?)
* Not necessarily by means of a questionnaire or interview [12]
* Terminology: usually a synonym of “empirical study”.

* Terminology: If done in the field, aka field study

The steps of survey research are the same as for case studies. But the main differences are:
e Larger number of cases
* Automated data collection vs manual one

* Automated data analysis vs manual one

An example of survey research, “A study of the uniqueness of source code” by Gabel and Su
l6]:

what is
large? small?

but what is a
field in
software
engineering?
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Figure 2: Excerpts of the results of Gabel and Su [6]

* 3,958 C projects, 1571 C++ projects, 437 Java programs (420 Millions lines of code)
e collect token-level n-grams (with and without abstraction / granularity)
e measure uniqueness (syntactic redundancy)

* results are in Figure ]

There are many other expressions and related concepts, but they are less used in the software
engineering literature:

* User study

» Action research: do it as opposed to observe it

* Natural experiment: control conditions are determined by nature
* Quasi-experiment

* Ethnography

* Longitudinal study: involves repeated observations of the same variables over long pe-
riods of time The magic of
version

* Cohort study or Panel study: a particular form of longitudinal study where a group of ., ...

subjects (patients) is closely monitored over a span of time.



4 Validity

Empirical research can be informative or anecdotal, it can contribute to major advances for
knowledge or be completely flawed.

* Generalization from two examples?

* Measure the wrong thing?

The systematic study of the threats to validity aims at staying on the right side of science.
They are different kinds of validity

* External Validity
* Construct Validity

e Internal Validity

The external validity is the extent to which the results hold for other subjects.
* for other application domains?
e for other application programming languages?
e for other kinds of programmers?

* mitigation: careful inclusion criteria

The construct validity is the extent to which the observed phenomena correspond to what is
intended to be observed. Possible threats:

* bugs in tools used for measurement
* bugs in tools used for analysis

* mitigation: validated software, open-source

For controlled or natural experiments, the internal validity “means that changes in the de-
pendent variables can be safely attributed to changes in the independent variables” [11].

e what factors are uncontrolled?



* mitigation: ?

The reliability “focuses on whether the study yields the same results if other researchers repli-
cate it” [3]. Related to the well-known “experimenter bias”.

The analysis and assessment of threats often/always contains a subjective part (on your side
and on the reviewer’s side).

5 Statistics

Having a good statistical analysis is important in some but not all empirical research (for
instance for controlled experiments). This course is not a statistics course, so I only remind
the core-core concepts.

* aconfidence interval indicates the reliability of the result

e acritical value of a measure is the threshold beyond which randomness is not a possible
explanatory option.

¢ the null hypothesis states that the observed phenomena simply occurs by chance.
* atypelerror is detecting an effect that is not present
* the p-value is the upper bound on the type 1 error frequency.

* the effect size indicates the magnitude of an effect

Common anti-patterns in SE papers:
e the authors don’t understand what their statistics mean
¢ the reviewers don’t understand what the statistics mean
* only the p-value are given and not the core metrics

* statistics just for statistics and not enough perspectives, actionable, deep discussions

Hypotheses:

* Null hypothesis: no effect, no relation ship, random

10



» Alternative hypothesis: there is an effect

For computer scientists, all statistics can be understood and validated with Monte-Carlo sim-
ulations.

counter=0 # temp variables
for i in range(0,Ntest):
vl=[x for x in range(0, Nelem)]
v2=[x for x in range(0, Nelem)]
# purely random phenomenon, no correlation at all
random. shuffle (v1)
random. shuffle (v2)
spearman=scipy.stats.spearmanr(vl,v2)[0]
if spearman>critical_value:
counter=counter+1

p_value = counter=1.0/Ntest

6 Conclusion

The best way to truly understand and appreciate empirical software engineering is to read
and reread excellent empirical papers. Here is an arbitrary anthology.

7 Appendix

What are the main venues for empirical software engineering research? An answer with DBLP
(controlled|study|experiment|empiric in the title):

* Empirical Software Engineering (ESE) (522 publications)
* Journal of Systems and Software (JSS) (284 publications)

* Information & Software Technology (INFSOF) (244 publications)

IEEE Trans. Software Eng. (TSE) (237 publications)

ICSE (230 publications)

11



Important Concepts

empirical software engineering,
engineering,

science,

software engineering,
validity, 9]

actionable,

case study, [6]

construct validity, [9]

controlled experiment,
external validity, [9]

field study;,

internal validity, [9]

mining software repositories,
reductionism,

reliability,

software evolution,

software maintenance,
survey, [7|

threats to validity,[9]
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