
Introduction to Empirical Software Engineering

Martin Monperrus
University of Lille

Version of June 28, 2016

This documents presents an introduction to empirical software engineering. It has been first
prepared for a course at EJCP 20151, then reworked for EJCP 2016.

This document will evolve, I would thus appreciate your feedback.
– Martin Monperrus

Background: see http://www.monperrus.net/martin/about+me
Previous work in empirical software engineering: see http://www.monperrus.net/martin/
publications

1 Science and Engineering

The classical difference between science and engineering:

• Science is about observation, explanation.

• Engineering is about creation and optimization of tools.

There is no hierarchy, both are beautiful:

• Science is curiosity driven.

• Engineering is utility driven.

But there are profound links between both:

• Science: needs new tools (particle collider, Galileo’s telescope)

1http://ejcp2015.inria.fr/

1

http://www.monperrus.net/martin/about+me
http://www.monperrus.net/martin/publications
http://www.monperrus.net/martin/publications


• Engineering: needs observation and explanation on phenomena resulting from new
tools.

Software engineering research sometimes falls short on the utility side.

• Unreasonable assumptions.

• No applicability.

• No empirical validation.

2 A Tentative Definition of Empirical Software Engineering

Software engineering is dual. Literally, software engineering is the creation and maintenance
of software. But from a research perspective, software engineering is the body of knowledge
about the creation and maintenance of software and about the phenomena underlying and
emerging from those two activities.

• software engineering: creation and maintenance of actual software

• software engineering research: tools to create software, understanding of the nature of
software and its usage.

Empirical software engineering is a research area concerned with the empirical observation
of software engineering artifacts and the empirical validation of software engineering theo-
ries and assumptions. Subfields of software engineering that are accustomed to empirical
research comprise software evolution, software maintenance and mining software reposi-
tories.

• Observation of artifacts.

• Validation of tools.

• Validation of methodologies.

• Validation of assumptions.

For example:

• Observation of artifacts: What is distribution of software dependencies?

2



Empirical software 
engineering

Observation of data

Validation of 
assumptions

Validation of effects

Explanation of 
phenomena

Controlled 
experiment

Case study

Surveys

Actionable results

Threats to validity

Statistics

Research questions

Figure 1: A partial conceptual map of empirical software engineering

• Explanation of phenomena: Why is the distribution exponential? [10]

• Validation of tools: Does static analysis of buffer overflows work in practice?

• Validation of methodologies: Is pair-programming effective?

• Validation of assumptions: Can an average programmer write a specification in linear
temporal logic?

Empirical software engineering starts with a good question:

• Is the assumption of independence in N-version programming true? [8]

• Is static typing really good? [7]

• What is the diversity of module usages?[9]

• Does Github change something in open-source processes? [2]

• <Your questions>

There are good, so-what and bad questions. A good question has at least one of:

• a clear answer.

• triggers new questions.

3



• an actionable answer.

• a surprising result (and why not a fascinating one).

You often read reviews like: “Nice paper, well-written and interesting results but the results
are not actionable”. In ESE, an answer is said to be actionable if the answer leads to (“engi-
neering forever”):

• the creation of a new tool

• the improvement of existing tools

• the improvement of existing development and engineering processes

Empirical research can be applied to all artifacts of the software engineering process:

• Code (source, binary)

• Version control systems

• Bug reports

• Documentation

• Communication traces (e.g. emails, forums, Stackoverflow)

• Design documents

• Execution traces

• Configuration files

3 Types of empirical software engineeering

A controlled experiment “is an investigation of a testable hypothesis where one or more in-
dependent variables (treatment) are manipulated to measure their effect on one or more de-
pendent variables” [3]. For example using a tool vs not using a tool. See the TSE survey on
this topic [13].

• a hypothesis

• tasks

4



• subjects (who?)

A concrete example: “Software Systems as Cities: A Controlled Experiment” [14].

• 5 questions, incl “Does the use of CodeCity increase the correctness of the solutions to
program comprehension tasks, compared to non-visual exploration tools, regardless of
the object system’s size?”

• 10 tasks, e.g. “Locate all the unit test classes of the system and identify the convention
(or lack thereof) used by the developers to organize the tests”

• subjects: 6 locations, e.g. “Bologna I. 8 professionals with 4–10 years of experience.”

• The answer is yes.

“An experimental evaluation of the assumption of independence in multiversion program-
ming” [8]

• RQ: are bugs independent?

• 1 task (implement a missile interception decision system

• subjects: 27 student programmers

• The answer is no: “We conclude that the model does not hold. However, clearly the
only potential problem with the model is that it is derived from the assumption of in-
dependent failures. Thus, we reject this assumption.”

A controlled experiment is a child of reductionism, which advocates to constantly seek and
isolate simple laws and effects. But, sometimes the phenomenon under study is too complex ecology,

astronomy
,

• some effects happen only at a certain size (10 developers, 100000LOC, etc)

• some effects happen only on a certain time frame (code decay after 5 years)

• too many and uncontrolled independent variables (programmer background the classical
“student
subject”
problem

, applica-
tion domain)

Even if a controlled experiment is possible:

• it may be very costly (pay real developers for 2 months?)

5



• it may clash with the duration and requirements of a PhD (short term results and pub-
lications)

A case study is “an empirical method aimed at investigating contemporary phenomena in
their context” [12]. BMuch

confusion.
Different
from
colloquial
meaning
“worked
example”

• Descriptive case study: portraying a situation or phenomenon.

• Exploratory case study: finding out what is happening, seeking new insights and gen-
erating ideas and hypotheses for new research.

• Confirmatory & Falsifying case study: testing existing theories

The steps of for setting up case studies (Five of [12] plus one) be agile!:

• set up objectives and research questions (case study design)

• selection of cases (purposive sampling, extreme/critical/paradigmatic cases) extreme is a
revealer

• prepare what and how the data should be collected

• collect the data

• analyze the data

• reporting

An example, “Pair Programming and Software Defects – A Large, Industrial Case Study” [1]

• project large Italian manufacturing company (application domain?)

• 5 RQs (table 11): Is there a relationship between the usage of pair-programming and
the defect rate in the code?

• 6 types of data (Table 12): effort, PP configuration, work item, changelog.

• 39 defects, 144 user story implementations

• Zero-inflated Poisson Regression (ZIPR), Mann-Whitney, Kolmogorov-Smirnov

• There is a slight effect of PP on reducing defects

• My opinion: does it improve code ownership?

6



On this topic, I recommend the excellent reading “Five misunderstandings about case-study
research” [5]. Excerpts:

• Misunderstanding: concrete, practical (context-dependent) knowledge is less valuable
than general, theoretical (context-independent) knowledge : no depth only comes with
context.

• Misunderstanding: One cannot generalize on the basis of an individual case; therefore,
the case study cannot contribute to scientific development: no, falsification requires a
single example.

• Misunderstanding: The case study contains a bias toward verification, that is, a ten-
dency to confirm the researcher’s preconceived notions: no, not more than with other
techniques.

• Misunderstanding: It is often difficult to summarize and develop general propositions
and theories on the basis of specific cases: no, a good narrative can have a much bigger
impact. (see the excellent paper “My hairiest bug war stories” [4])

A survey is the study of the characteristics of a broad population of individuals [3].

• Terminology: BDifferent from common meaning of “literature survey”.

• A collection of standardized information from a specific population [12]

• Emphasis on large sample (as opposed to case study?) what is
large? small?

• Not necessarily by means of a questionnaire or interview [12]

• Terminology: usually a synonym of “empirical study”.

• Terminology: If done in the field, aka field study but what is a
field in
software
engineering?

The steps of survey research are the same as for case studies. But the main differences are:

• Larger number of cases

• Automated data collection vs manual one

• Automated data analysis vs manual one

An example of survey research, “A study of the uniqueness of source code” by Gabel and Su
[6]:

7



Figure 2: Excerpts of the results of Gabel and Su [6]

• 3,958 C projects, 1571 C++ projects, 437 Java programs (420 Millions lines of code)

• collect token-level n-grams (with and without abstraction / granularity)

• measure uniqueness (syntactic redundancy)

• results are in Figure 2

There are many other expressions and related concepts, but they are less used in the software
engineering literature:

• User study

• Action research: do it as opposed to observe it

• Natural experiment: control conditions are determined by nature

• Quasi-experiment

• Ethnography

• Longitudinal study: involves repeated observations of the same variables over long pe-
riods of time The magic of

version
control• Cohort study or Panel study: a particular form of longitudinal study where a group of

subjects (patients) is closely monitored over a span of time.

8



4 Validity

Empirical research can be informative or anecdotal, it can contribute to major advances for
knowledge or be completely flawed.

• Generalization from two examples?

• Measure the wrong thing?

The systematic study of the threats to validity aims at staying on the right side of science.
They are different kinds of validity

• External Validity

• Construct Validity

• Internal Validity

The external validity is the extent to which the results hold for other subjects.

• for other application domains?

• for other application programming languages?

• for other kinds of programmers?

• mitigation: careful inclusion criteria

The construct validity is the extent to which the observed phenomena correspond to what is
intended to be observed. Possible threats:

• bugs in tools used for measurement

• bugs in tools used for analysis

• mitigation: validated software, open-source

For controlled or natural experiments, the internal validity “means that changes in the de-
pendent variables can be safely attributed to changes in the independent variables” [11].

• what factors are uncontrolled?

9



• mitigation: ?

The reliability “focuses on whether the study yields the same results if other researchers repli-
cate it” [3]. Related to the well-known “experimenter bias”.

The analysis and assessment of threats often/always contains a subjective part (on your side
and on the reviewer’s side).

5 Statistics

Having a good statistical analysis is important in some but not all empirical research (for
instance for controlled experiments). This course is not a statistics course, so I only remind
the core-core concepts.

• a confidence interval indicates the reliability of the result

• a critical value of a measure is the threshold beyond which randomness is not a possible
explanatory option.

• the null hypothesis states that the observed phenomena simply occurs by chance.

• a type I error is detecting an effect that is not present

• the p-value is the upper bound on the type 1 error frequency.

• the effect size indicates the magnitude of an effect

Common anti-patterns in SE papers:

• the authors don’t understand what their statistics mean

• the reviewers don’t understand what the statistics mean

• only the p-value are given and not the core metrics

• statistics just for statistics and not enough perspectives, actionable, deep discussions

Hypotheses:

• Null hypothesis: no effect, no relation ship, random

10



• Alternative hypothesis: there is an effect

For computer scientists, all statistics can be understood and validated with Monte-Carlo sim-
ulations.

counter=0 # temp variables
for i in range ( 0 , Ntest ) :

v1 =[ x for x in range ( 0 , Nelem ) ]
v2 =[ x for x in range ( 0 , Nelem ) ]
# purely random phenomenon , no c o r r e l a t i o n at a l l
random . s h u f f l e ( v1 )
random . s h u f f l e ( v2 )
spearman=scipy . s t a t s . spearmanr ( v1 , v2 ) [ 0 ]
i f spearman> c r i t i c a l _ v a l u e :

counter=counter+1

p_value = counter *1 . 0/ Ntest

6 Conclusion

The best way to truly understand and appreciate empirical software engineering is to read
and reread excellent empirical papers. Here is an arbitrary anthology.

7 Appendix

What are the main venues for empirical software engineering research? An answer with DBLP
(controlled|study|experiment|empiric in the title):

• Empirical Software Engineering (ESE) (522 publications)

• Journal of Systems and Software (JSS) (284 publications)

• Information & Software Technology (INFSOF) (244 publications)

• IEEE Trans. Software Eng. (TSE) (237 publications)

• ICSE (230 publications)

11



Important Concepts

empirical software engineering, 2
engineering, 1
science, 1
software engineering, 2
validity, 9
actionable, 4
case study, 6
construct validity, 9
controlled experiment, 4
external validity, 9
field study, 7
internal validity, 9
mining software repositories, 2
reductionism, 5
reliability, 10
software evolution, 2
software maintenance, 2
survey, 7
threats to validity, 9

12



References

[1] E. di Bella, I. Fronza, N. Phaphoom, A. Sillitti, G. Succi, and J. Vlasenko. “Pair Program-
ming and Software Defects – A Large, Industrial Case Study”. In: IEEE Transactions on
Software Engineering 39.7 (July 2013), pp. 930–953.

[2] M. Biazzini, M. Monperrus, and B. Baudry. “On Analyzing the Topology of Commit His-
tories in Decentralized Version Control Systems”. In: Proceedings of the 30th Interna-
tional Conference on Software Maintenance and Evolution. Canada, 2014.

[3] S. Easterbrook, J. Singer, M. Storey, and D. Damian. Selecting Empirical Methods for
Software Engineering Research. Ed. by F. Shull and J. Singer. Springer, 2007.

[4] M. Eisenstadt. “My hairiest bug war stories”. In: Communications of the ACM 40.4 (1997),
pp. 30–37.

[5] B. Flyvbjerg. “Five misunderstandings about case-study research”. In: Qualitative in-
quiry 12.2 (2006), pp. 219–245.

[6] M. Gabel and Z. Su. “A study of the uniqueness of source code”. In: Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of software engi-
neering. ACM. 2010, pp. 147–156.

[7] S. Hanenberg. “An Experiment About Static and Dynamic Type Systems: Doubts About
the Positive Impact of Static Type Systems on Development Time”. In: Proceedings of
the ACM International Conference on Object Oriented Programming Systems Languages
and Applications. 2010, pp. 22–35.

[8] J. C. Knight and N. G. Leveson. “An experimental evaluation of the assumption of in-
dependence in multiversion programming”. In: IEEE Trans. on Software Engineering
(TSE) 1 (1986), pp. 96–109.

[9] D. Mendez, B. Baudry, and M. Monperrus. “Empirical Evidence of Large-Scale Diversity
in API Usage of Object-Oriented Software”. In: Proceedings of the IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM). 2013.

[10] C. R. Myers. “Software Systems as Complex Networks: Structure, Function, and Evolv-
ability of Software Collaboration Graphs”. In: Physical Review E 68 (Oct. 2003), p. 046116.

[11] D. E. Perry, A. A. Porter, and L. G. Votta. “Empirical studies of software engineering:
a roadmap”. In: Proceedings of the conference on The future of Software engineering.
ACM. 2000, pp. 345–355.

[12] P. Runeson and M. Höst. “Guidelines for conducting and reporting case study research
in software engineering”. In: Empirical software engineering 14.2 (2009), pp. 131–164.

[13] D. I. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic, N.-K. Liborg,
and A. C. Rekdal. “A survey of controlled experiments in software engineering”. In: IEEE
Transactions on Software Engineering 31.9 (2005), pp. 733–753.

[14] R. Wettel, M. Lanza, and R. Robbes. “Software systems as cities: a controlled experi-
ment”. In: Proceedings of the 33rd International Conference on Software Engineering.
ACM. 2011, pp. 551–560.

13


	Science and Engineering
	A Tentative Definition of Empirical Software Engineering
	Types of empirical software engineeering
	Validity
	Statistics
	Conclusion
	Appendix

