Introduction to Automatic Software Repair

Martin Monperrus
University of Lille

Wednesday 22" July, 2015

This document presents an introduction to automatic software repair. It has been first

prepared for a course at ECI 201Eﬂ an Argentine winter school on computer science.
The main URL of the course is http://www.monperrus.net/martin/eci2015/

This is a temporary version of the course notes, for printing.

Contents

(1 Background|

B2 i Paich G onl

3.1 Repair Operators|
[3.2 Sophistication|

[4 Runtime Repair|

[> Repair research questions|

6 Ad i ons

[r_Conclusionl
"http://dc.uba.ar/events/eci/2015/

12

15

15

18

http://www.monperrus.net/martin/eci2015

1 Background

1.1 Short bio

[am an associate professor at the University of Lille (France) and a member of INRIA’s
research group SPIRALS. In 2008-2011, I was a research associate in Mira Mezini’s group
at the Darmstadt University of Technology (Germany). I received a Ph.D. from the Uni-
versity of Rennes (France) in 2008, for which I was supervised by Jean-Marc Jézéquel,
Joél Champeau and Brigitte Hoeltzener. In 2005-2008, I was a research assistant at
ENSIETA (Brest, France), thanks to a research scholarship from DGA and CNRS. Pre-
viously, I worked as a software engineer for CMB. I spent 6 months working with Yoshua
Bengio at the University of Montréal (Canada) in 2004 for my master’s thesis. I received
a M.Sc. and an engineering degree in computer science from the Compiégne University
of Technology (France) in 2004.

2 Concepts

Software engineering is dual. Literally, software engineering is the creation and main-
tenance of software. But from a research perspective, software engineering is the body
of knowledge about the creation and maintenance of software and about the phenomena
underlying and emerging from those two activities.

e software engineering: creation and maintenance of actual software

e software engineering research: tools to create software, understanding of the nature
of software and its usage.

2.1 In short

Automatic software repair is the process of fixing bugs automatically. There are different
kinds of repair

e patch generation

e runtime repair

——— O e———

2.2 Core concepts
The classical terminology about failures [1]

e a failure is an observed inacceptable behavior

e a error is a propagating incorrect state prior to the failure

e a fault is the root cause of the error (in particular incorrect code)

e a bug is both a failure and a fault wikipedia:
_ it’s all :-)

e the term “defect” is also used

My definition: A software bug is a gap between the expected behavior of a program and
what it actually does.What I like in this definition is that:

e it does not imply executable specifications

e it does not imply specifications at all

——_—

A specification S is the a set of expected correct behaviors and properties.
e a specification may be written in natural language

e a specification may be incomplete

a specification may be incorrect

a specification may be inconsistent

a specification may be implicit (e.g. “the program shall not crash”)

a specification may be executable

—— O ———

An oracle is based on the specification and is intended to determine, for each test (stim-
uli/input), if the program has violated the specification.

e assertEquals(6, factorial(3))
e impacted by encapsulation

e may require white-box observations (mock)

~

Ideal specification

N s

approﬁ mates

~

Actual specification

N s

GRS sub%etOf should
 Stimuli | |ghoua
contains Exepytable
.) specification
\ Oracle \
- compli%s with
Program

)

Figure 1: Overview of the concept of “specification’

—— O ——

How to repair bugs automatically?

Choose a class of bugs

Identify a good bug oracle

Set up repair operators
e Add a dose of CPU usage

Serve it

——_— =

In repair, there are two kinds of oracles, the bug oracle and the regression oracle.
A bug oracle tells you “YES there is a bug”, “No, it is fixed”

e Ex: Crashing input: $ pgm --input foo

e Ex: Failing test case

e See a good survey [15]

——_— O e———

A regression oracle tells you “Ooops, you’ve broken something” or “OK, go ahead”.

e test suite (input-output based)

pre-conditions, post-conditions, invariants [43]

logics based specification (LTL, etc) [17]

e if you can reason about the impact of the repair operator, you may avoid a regres-
sion oracle

— . O ——

Fault class / defect class:
e Buffer overflow

e Crashes

Unhandled exceptions

Infinite loop [25]

——— o e—

Core repair algorithm: core repair

algorithm
While YES there is a bug {

Try something else

}
Because of the loop, a good bug oracle is:
e Automated

e Does not take too long

e Case of not automated: human user [4] story:
human
crowd

A repair operator (or “repair action”) is a modification on the program code or on the
program state.
Examples on program code:

-add a precondition
+ if (age>=18)
serve_adult_content()

——————

Examples of behavioral repair operators:
e add/remove/replace code
e add a precondition [§]
e replace a condition [§]
e replace a method parameter by another

e add a check [22] talk about
Autopag

——_— =

Examples of state repair operators:
e change a register value [32]
e component restart |38, [37]
e retry [10]

e change object references [9]

——_— o e————

Some repair operators may introduce a regression. In this case we need a regression
oracle:

Listing 1: Basic repair algorithm with regression testing

For some time {
While "YES there is a bug" {
Try something else

}

Is there a regression?

}

3 Automatic Patch Generation

In automatic patch generation, the bug oracle can be:
e a failing test case (95% of the cases)
e crashing input

e static analyses [23]

——————

...and the regression oracle can be:
e a test suite (95% of the cases)
e none (with a carefully designed repair operator)

e some static analyses

—— O ————

An example of patch generation technique, Genprog [13].

e test suite as oracle of correctness and oracle of bug (at least one failing test case)

e add/ remove/replace statements
e core assumption: redundancy based repair [26].

e evaluation on real bugs

describe
redundancy
experiment

X:=a+bh; Program
y:=a*b; /5\\

while l:}f a) { /:\ 7hile\
>
q'=13+ 1 ; X + = Block
/N /N N
X:=a+b a by a =

P
a +
! /\
a 1
Figure 2: What is an abstract syntax tree (AST)?

e re-implementable in DIY?

Listing 2: Core Genprog Algorithm

While some tests fail {
choose a random modification in add/replace/delete
perform it
run tests

——— o e——

Examples of behavioral repair operators:
e add/remove/replace existing code
e add a precondition [§]
e replace an if-condition [§]

e add a check [22]

—— O e———

In Semfix [29], Nopol [§]

e Finds a value v such that the failing test case pass (an angelic value)

talk about
Autopag

e Synthesisize an expression e such that e(context) = v

e Repair equation: Vexecutions, e(context) = v

——_— e

Semfix [29] and Nopol [§] uses code synthesis to create a patch
e let I, ; be the execution context of expression x at execution 4
e let O, ; be the expected value of expression = at execution ¢
e for a given expression, synthesize exp such that V;, exp(I;) = O;

e any input/output based synthesizer may be plugged in

—— O ———

There are several ways to find angelic values.
e Symbolic/Concolic execution execution [29]
e Value replacement aka speculative execution (comes from hardware)

e Model-based diagnosis and trace formulas [I8], 30] Wotawa,
early papers

Listing 3: Angelic Value with symbolic/concolic execution
void pgm(i) {
if (x!I=1) {
return 2;

}
else {
return i+2

}
}

assert pgm(0) = 2
assert pgm(3) =5

void pgm(i) {

if (X) {
return 2;
}

else {
return i+2
¥

}

Constraint: 2 = X 7 0, 042
Solution: X = false

3.1 Repair Operators
Now, let’s go through different repair operators. We’ve already seen the ones from

Genprog.
Kim et al. [20] has 10 repair templates:

e null pointer checker

e method replacer, parameter adder /remover /replacer, expression adder /remover /re-
placer

——_— O —————

Kern and Esparza [19] builds a meta-program that is meant to be symbolically executed

Listing 4: Meta-program for repair [19]
V01d pgm(i)

{
if (1= 1) {

i=2;

}

else {
i=i+2
}

return i

}

// transformed into
void pgm(i) {

10

if (makeSymbolicBooleanVariable() 71!=1,1 == 1) {
i = makeSymbolicBooleanVariable() ? 2, 3;

}

else {
i=makeSymbolicBooleanVariable() ? i+2, i-2;

}

return 1

}

// ask JPF: what is valid value of the symbolic variables?

——_— e

3.2 Sophistication

Fault localization can be used to speed up repair. Most techniques use them.
e try to repair most suspicious statements first

e bugs can be repaired at many different places

— ., O ——

The locality of the repair ingredient pool matters [26].

name commits redun. med .pool redun. lo- med. pool
global size loc cal size glo

1687 9.00% 43313 6.00% o7
log4
o 713 17.00% 8855 16.00% 18
junit
_ 157 3.00% 16911 2.00% 22.5
pico

1019 7.00% 25406 4.00% 35
collections

2210 6.00% 69943 4.00% 37
math

1290 8.00% 22330 6.00% 63
lang

—— O e————

Minimization can be used when the repair process has by-products.

11

Use by Genprog

but no real evolution

—_— =

4 Runtime Repair

An example of runtime technique, [9].

uses invariants in data structure
force restoring those invariants using a constraint solver

chooses the least costly repair (smallest number of changes)

e —— O ———

In runtime repair, the bug oracle is:

a crash (95% of the cases) (segfault)
an unhandled exception
an assertion violation

a performance problem [40]

Examples of state repair operators:

change object references [9]
change a register value [32]
component restart |38, 37]

retry [10]

checkpoint and restart

— ., O ——

12

what about
Super
Mario? [21]

Reboot /restart is the most common repair action.

can be made recursively [2]
is related to crash-only property [3]

much research on this about rejuvenation [14]

——_— =

Failure oblivious computing concentrates on memory errors [35]:

if the program attempts to read an out of bounds array element, returns the first
one

if the program use an invalid pointer to read a memory location, returns a manu-
facture value

if the program attempts to write a value to an out of bounds array element or use
an invalid pointer to write a memory location, skip it

——— O —

Error virtualization consists of transforming an unhandled error case into an handled one

[39]:

returns error code
transformed into a caught exception [6]

sophistication: undo changes of the current method, analyzed returned value upper
in the stack

sophistication: trace the artificial value

error virtualization in the context of exception handling [0]

——_—

Clearview is a famous multi-million $ runtime repair system [32].

learn invariants on register values

13

validation
on Pine

e correlate invariants and failures

e repair is reinforcing the invariant

——— O ——

Carzaniga et al. [4] proposed an original runtime repair approach. for web applications.
e the oracle is the end-user, with a button “it doesn’t work”

e the repair action consists of picking up an alternative method from a set of alter-
natives (e.g. two different method calls for youtube)

e relies on the presence of computational redundancy in software (several ways to do
the same thing). Will be discussed later [11].

——_— e

Some bugs disappear in new versions while others appear. This key insight is behind the
repair system proposed by Hosek and Cadar [16].

e the oracle is a Unix signal (SEGFAULT, etc)
e the new version is run in parallel with the old

e the repair action consists of transferring the system state and executing another
version

—_— O e———

Many bugs are due to the wild space of possible inputs. Generating appropriate filters
avoid crashes [24].

e identify structure of inputs
e learn classical values from dataset

e rectify inputs based on standard values

14

5 Repair research questions
What bugs can be repaired?
e https://github.com/php/php-src/commit/1e91069
e Math-280: bug in inverseCumulativeProbability() for Normal Distribution

—_— O e———

What bug kinds can be repaired? not all bugs
in a given

e arithmetic errors [29] fault class

e off-by-one errors [I§]
e conditions errors [29, [§]

e infinite loops [25]

—— O ————

How fast can real bugs be repaired?
e “An average repair run took 356.5 seconds” [13]

e Within less than 2 minutes [§]

6 Advanced Discussions

There are other kinds of repairs:
e domain-specific repair [36] [12]

e test repair [7]

Some controversies about Genprog:

e 10 genetic programming, no evolution [33]

15

https://github.com/php/php-src/commit/1e91069
https://issues.apache.org/jira/browse/MATH-280

e really bad test suites [34]

e experimental error [34]

——— O e—

Relation between repair and program synthesis. Given a program P and a specification

S.
e Classical correctness: P that complies with S, P = S
e Synthesis: find P such that P = S

e Repair: find a change C such that P+ C = S

——— e

The question of patch overfitting [41]:
e some patches simply hard code the correct answer
e how often does this happen?

e how to mitigate this?

Listing 5: Illustration of patch overfitting
assertEquals(3,pgm(6))

void pgm(i) {
// synthesized patch
if (i == 3) return 6

// rest of the program

}

——— O e—

The question of correctness

16

e classical correctness is binary
e correctness may be continuous [27]

e correctness may be partial [28§]

——_— =

The question of patch acceptability. Which patch is better?

// fix A: code insertion at line 21
+ if (x==2) { foo(x); }

// fix B: code insertion at line 21
+if (x<=2) { foo(x); }

e for impact minimization, #1 is better

e for regular output domain, #2 is better (no spike)

—_— =

The question of equivalent computational effects.
e there are often several if not dozens of equivalent patches
e some of them are due to the weakness of the test suite
e others are due to some kind of computational equivalence

e fascinating empty research area

——_— O ————

The question of the fitness landscape.
e one small change may yield a big difference in output

e to drive a search you need to stack some changes. convex

landscape,

e necessity to find smooth repair operators [5] hill climbing

17

e and smooth programming languages [31]

——_— O e———

One important milestone for automatic repair research:

o fully generated patch accepted by human developers without knowing it has been
created by a robot

e or even a flame war

e kind of captcha for repair

—— O ————

Many bugs appear because we have development processes and software stack that are

fragile and brittle Software
. _ . brittleness,

e fragile to changes in the environment software

fragility

e fragile to changes in the code
e fragile with respect to clever and malicious users

e needs for rethinking many points of software engineering [42] [11]

7 Conclusion

Automatic software repair is a young research area. It touches the foundations of soft-
ware. I think it’s fun and I would be glad to help you enter this fascinating field.

18

Important Concepts

fault class / defect class,
software engineering, [2]
angelic values, [9]
correctness, [16]

error, [3]

failure,

fault, [3]

regression oracle, [f]
rejuvenation, [I3]

repair action, [I3]

repair operator, [0]
speculative execution, @

19

References

1]

2]

3]

4]

15]

[6]

7]

8]

19]

[10]

[11]

[12]

A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxon-
omy of dependable and secure computing. [EEE Transactions on Dependable and
Secure Computing, 1(1):11-33, 2004.

G. Candea and A. Fox. Recursive restartability: Turning the reboot sledgehammer
into a scalpel. In Hot Topics in Operating Systems, 2001. Proceedings of the Fighth
Workshop on, pages 125-130. IEEE, 2001.

G. Candea and A. Fox. Crash-only software. In Proceedings of the 9th conference
on Hot Topics in Operating Systems-Volume 9, pages 12-12. USENIX Association,
2003.

A. Carzaniga, A. Gorla, N. Perino, and M. Pezzé. Automatic workarounds for
web applications. In FSE’10: Proceedings of the 2010 Foundations of Software
Engineering conference, pages 237-246, New York, NY, USA, 2010. ACM.

S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity and robustness of pro-
grams. Communications of the ACM, 55(8):107-115, 2012.

B. Cornu, L. Seinturier, and M. Monperrus. FException Handling Analysis and
Transformation Using Fault Injection: Study of Resilience Against Unanticipated
Exceptions. Information and Software Technology, 2014.

B. Daniel, V. Jagannath, D. Dig, and D. Marinov. ReAssert: Suggesting repairs for
broken unit tests. In Proceedings of the 24th IEEE/ACM International Conference
on Automated Software Engineering, pages 433-444. IEEE/ACM, November 2009.

F. DeMarco, J. Xuan, D. L. Berre, and M. Monperrus. Automatic Repair of Buggy
If Conditions and Missing Preconditions with SMT. In Proceedings of the 6th Inter-
national Workshop on Constraints in Software Testing, Verification, and Analysis
(CSTVA 2014), 2014.

B. Demsky and M. Rinard. Automatic detection and repair of errors in data struc-

tures. ACM SIGPLAN Notices, 38(11):78-95, 2003.

G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G. Tagni. Exception handling
for repair in service-based processes. IEEE Transactions on Software Engineering,
36(2):198-215, 2010.

R. P. Gabriel and R. Goldman. Conscientious software. In Acm Sigplan Notices,
volume 41, pages 433-450. ACM, 2006.

D. Gopinath, S. Khurshid, D. Saha, and S. Chandra. Data-guided repair of selec-
tion statements. In Proceedings of the 36th International Conference on Software
Engineering, pages 243-253. ACM, 2014.

20

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog: A generic method for
automatic software repair. IEEE Transactions on Software Engineering, 38:54-72,
2012.

M. Grottke and K. S. Trivedi. Fighting bugs: Remove, retry, replicate, and rejuve-
nate. Computer, 2007.

M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. A comprehensive survey of trends
in oracles for software testing. Technical Report CS-13-01, 2013.

P. Hosek and C. Cadar. Safe software updates via multi-version execution. In
Proceedings of the 2013 International Conference on Software Engineering, pages
612-621. IEEE Press, 2013.

B. Jobstmann, A. Griesmayer, and R. Bloem. Program Repair as a Game. Program,
507219:226-238, 2005.

M. Jose and R. Majumdar. Cause clue clauses: error localization using maximum
satisfiability. ACM SIGPLAN Notices, 46(6):437-446, 2011.

C. Kern and J. Esparza. Automatic error correction of java programs. In Formal
Methods for Industrial Critical Systems, pages 67-81. Springer, 2010.

D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation learned from
human-written patches. In Proceedings of ICSE’2013, 2013.

C. Lewis and J. Whitehead. Runtime repair of software faults using event-driven
monitoring. Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering - ICSE ’10, 2:275, 2010.

Z. Lin, X. Jiang, D. Xu, B. Mao, and L. Xie. Autopag: towards automated software
patch generation with source code root cause identification and repair. In Proceedings
of the 2nd ACM symposium on Information, computer and communications security,
pages 329-340. ACM, 2007.

F. Logozzo and T. Ball. Modular and verified automatic program repair. In Proceed-
ings of the 27th ACM International Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA’12). ACM Press, New York, NY,
2012.

F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and M. Rinard. Automatic input
rectification. In Proceedings of ICSE, 2012.

S. L. Marcote and M. Monperrus. Automatic Repair of Infinite Loops. Technical
Report 1504.05078, Arxiv, 2015.

21

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

M. Martinez, W. Weimer, and M. Monperrus. Do the Fix Ingredients Already
Exist? An Empirical Inquiry into the Redundancy Assumptions of Program Repair
Approaches. In Proceedings of the International Conference on Software Engineering
- NIER track, 2014.

S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of service profil-
ing. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 25-34. ACM, 2010.

M. Monperrus. A Critical Review of "Automatic Patch Generation Learned from
Human-Written Patches": Essay on the Problem Statement and the Evaluation
of Automatic Software Repair. In Proceedings of the International Conference on
Software Engineering, pages 234-242, 2014.

H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. SemFix: Program
Repair via Semantic Analysis. In Proceedings of the 2018 International Conference
on Software Engineering, 2013.

M. Nica, S. Nica, and F. Wotawa. On the use of mutations and testing for debugging.
Software: Practice and Experience, 43(9):1121-1142, 2013.

C. Ofria, C. Adami, and T. C. Collier. Design of evolvable computer languages.
IEEFE Transactions on Evolutionary Computation, 6(4):420-424, 2002.

J. H. Perkins, G. Sullivan, W.-F. Wong, Y. Zibin, M. D. Ernst, M. Rinard, S. Kim,
S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood, and
S. Sidiroglou. Automatically patching errors in deployed software. Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles - SOSP 09,
page 87, 2009.

Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of random search on
automated program repair. In Proceedings of the 36th International Conference on
Software Engineering, pages 254-265. ACM, 2014.

Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis of patch plausibility and
correctness for generate-and-validate patch generation systems. In Proceedings of
ISSTA. ACM, 2015.

M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and W. Beebee Jr. En-
hancing server availability and security through failure-oblivious computing. In
Proceedings of the 6th conference on Symposium on Opearting Systems Design €
Implementation- Volume 6, pages 21-21. USENIX Association, 2004.

H. Samimi, M. Schéfer, S. Artzi, T. D. Millstein, F. Tip, and L. J. Hendren. Au-
tomated repair of html generation errors in php applications using string constraint
solving. In ICSE, pages 277287, 2012.

22

[37]

[38]

[39]

[40]

[41]

[42]
[43]

S. Sicard, F. Boyer, and N. De Palma. Using components for architecture-based
management: the self-repair case. In Proceedings of the 30th international conference
on Software engineering, pages 101-110. ACM, 2008.

S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. Keromytis. As-
sure: automatic software self-healing using rescue points. In ACM Sigplan Notices,
volume 44, pages 37-48. ACM, 2009.

S. Sidiroglou, M. Locasto, S. Boyd, and A. Keromytis. Building a reactive im-
mune system for software services. In Proceedings of the USENIX Annual Technical
Conference, volume 161. 2005,(6), 2005.

S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard. Managing per-
formance vs. accuracy trade-offs with loop perforation. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE 11, pages 124-134, New York, NY, USA, 2011.
ACM.

E. K. Smith, E. Barr, C. Le Goues, and Y. Brun. Is the cure worse than the disease?
overfitting in automated program repair. In Proceedings of the 10th Joint Meeting of
the Furopean Software Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE), Bergamo, Italy, September
2015.

G. J. Sussman. Building robust systems an essay, 2007.

Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller.
Automated fixing of programs with contracts. In Proceedings of the International
Symposium on Software Testing and Analysis. AC, 2010.

23

	Background
	Short bio

	Concepts
	In short
	Core concepts

	Automatic Patch Generation
	Repair Operators
	Sophistication

	Runtime Repair
	Repair research questions
	Advanced Discussions
	Conclusion

