Exercise: Model a Linked List in Alloy

Author: Martin Monperrus

Version: 15. Oct. 2012

URL: http://www.monperrus.net/martin/exercise-alloy-linkedlist.pdf

Let’s consider the following Alloy specification modeling a linked list.

sig LinkedList {
head : lone Node
}

sig Node {
next : lone Node
}

1/ What does the “lone” mean? Why is it necessary?

2/ What does the following predicate mean? How should the predicate be called?

pred [l:LinkedList, n:Node] {
n — lL.head or n in l.head. “next
}

3/ Write a predicate called noCycle checking that there is no cycle in the list. The predicate takes
one argument of type LinkedList.

4/ Consider the following predicate. It represents a valid insertion in the list.

pred add|l:LinkedList, 1":LinkedList, new:Node| {
no new.next
and not l.contains[new| and 1’.contains|new|

}

Write a piece of Alloy code checking that "if a list has no cycle, a valid insertion results in new list
with no cycle as well". Note that even if you don’t have an answer to the previous question, you
can use the predicate noCycle in this one.

5/ Removing the condition "no new.next" breaks the property. Give an explanation.

6/ Does this model impose a special implementation, i.e. impose where to actually insert the new
node in the list? Justify your answer.

Page 1 of 1

http://www.monperrus.net/martin/exercise-alloy-linkedlist.pdf

