
This preprint is provided by the contributing authors.

Untangling Crosscutting Concerns in Domain-specific
Languages with Domain-specific Join Points

Tom Dinkelaker Martin Monperrus Mira Mezini
Technische Universität Darmstadt

{dinkelaker,monperrus,mezini}@informatik.tu-darmstadt.de

ABSTRACT
Like programs written in general-purpose languages, pro-
grams written in DSLs may also suffer from tangling and
scattering in the presence of domain-specific crosscutting
concerns. This paper presents an architecture that sup-
ports aspect-oriented features for domain-specific base lan-
guages. Both base programs and advices are written in dif-
ferent domain-specific languages. The framework relies on
the concept of domain-specific join point.

Categories and Subject Descriptors
D.3.3 [Software Engineering]: Language Constructs and
Features—Frameworks

General Terms
Design, Languages

Keywords
Aspect-oriented Programming, Domain-specific Languages

1. INTRODUCTION
In most aspect-oriented languages the concern-specific code

is written in the same language as the base program, i.e., the
part of the program that is not considered concern-specific.
Although, crosscutting concerns may be more directly ex-
pressed using domain-specific abstractions. To address this
problem, domain-specific aspect languages (DSALs for short)
provide abstractions to implement aspects for a special do-
main in a declarative way. Several DSALs have been pro-
posed, each targeting a particular domain (e.g., [16] for dis-
tributed software). These languages improve AOP technol-
ogy by combining it with DSL technology.

However, the combination of AOP and DSL technology
can be effective in the other direction as well, having aspects
improve the modularity of DSLs. Like programs written in
general-purpose languages, programs written in DSLs may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DSAL’09, March 3, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-455-3/09/03 ...$5.00.

also suffer from tangling and scattering in the presence of
domain-specific crosscutting concerns. Several approaches
provide aspects for DSLs in a particular domain (e.g., [18]
for weaving in grammar specifications).

Most existing AO language implementations strongly de-
pend on a particular base language: For each new base lan-
guage, e.g., a new DSL, an AOP tool must be re-implemented
specifically for this DSL, resulting in wasted development
costs. Extensible aspect compilers [4, 3] and run-times [17,
22, 21] support reusing aspect implementation infrastructure
for general purpose base languages such as Java or Scheme.
Yet, none of them targets DSLs as the base language. On
the other hand, none of the extensible DSAL approaches [19,
5, 12] supports composing a domain-specific advice language
with a domain-specific base language.

In this paper, our contribution is an approach for defining
aspect languages for DSLs. We present a framework, called
popart, that supports aspect-oriented features for domain-
specific base languages. Both base programs and advices
are written in different DSLs. The framework relies on the
concept of domain-specific join point, that has been iden-
tified as an open question during the Third Workshop on
Domain-Specific Aspect Languages [7].

The paper is organized as follows: Sec. 2 elaborates the
need for domain-specific join point models. Sec. 3 elaborates
how domain-specific aspect languages can be implemented
for DSLs. Sec. 4 discusses related work and Sec. 5 concludes
the paper.

2. PROBLEM STATEMENT
Domain-specific languages (DSLs) provide special abstrac-

tions that are closer to their problem domain, hence enable
developers to express their intents more directly.

Consider a simple workflow language [8] for assembling
composite applications from services inspired from BPEL
[1]. The DSL, called ProcessDSL, provides abstractions to
define processes that consist of several tasks to be executed
in a sequence. ProcessDSL introduces several domain-specific
keywords: the literal registry abstracts over the details
of accessing the registry component; the operation notify

is used to send an email message to all stakeholders of a
process; process and task are domain-specific abstractions.
Furthermore, Process DSL defines keywords for security en-
forcement: the two operations encrypt and decrypt are
used to secure messages; literals (e.g., RSA) enable to se-
lect an appropriate encryption algorithm; and the literal me
represents the identity on whose behalf the process is exe-
cuted.

This preprint is provided by the contributing authors.

1 process(name:”EasyCreditProcess”) {
2 def offers = [:];
3 task (name:”getOffers”) {
4 def services = registry.find(”Banking”);
5 services .each { bank −>
6 def enc req = encrypt(new RateReq(),RSA,bank.pubKey);
7 def enc resp = bank.call(”getRate”,[enc req]);
8 offers [bank] = decrypt(enc resp,RSA,me.privKey); ;
9 } }
10 task (name:”selectOffer”) {
11 def bank = ... //get cheapest bank from offers
12 def enc req = encrypt(new BorrowReq(),RSA,bank.pubKey);
13 def enc resp = bank.call(”borrow”,[enc req]);
14 def resp = decrypt(enc resp,RSA,me.privKey);
15 notify ”Borrowed a credit from ${bank}: ${resp}”;
16 } }

Figure 1: An Example DSL for Workflows

Fig. 1 shows a ProcessDSL program that defines a process
to select the cheapest from a set of credit offers. A process
with name “EasyCreditProcess” is defined with the keyword
process (lines 1–16). It consists of two tasks to be executed
in the defined order. Each task in ProcessDSL has a name
(defined in the round brackets following the keyword task)
and a closure (the code block in the curly brackets following
the name declaration). The code inside a task closure may
contain DSL abstractions, e.g., registry in line 4, as well
as general purpose code like each{} for iterating over col-
lections (cf. line 5). The first task (lines 3 to 9) searches a
list of banking services using the special keyword registry,
invokes getRate on each of them, and stores the offered
rates. The second task (lines 10–16) selects the cheapest
rate (line 11) and invokes borrow on the selected banking
service. It uses notify (line 15) to send an email with the
credit details to all stakeholders of the process (line 16).

Charfi [6] showed that there are crosscutting concerns in
workflow languages such as BPEL similar to the one pre-
sented here. The example shows that even for toy DSLs
like ProcessDSL, programs written may easily suffer from
tangling and scattering. In lines 6–8 and lines 12–14, func-
tional code of the process is scattered and tangled with non-
functional code of a security concern for confidential Web
service communication. For the sake of separation of con-
cerns, we would like to modularize the above crosscutting
concern by using aspects for ProcessDSL programs.

However, aspect-oriented programming tools are gener-
ally available only for general-purpose languages. Similar
to general-purpose languages, a solution for separation of
crosscutting concerns in a DSL program is to separate the
base program from the crosscutting concerns. However, in
contrast to general purpose languages, the aspect weaver
or composer has to take into account domain-specific join
points.

Domain-specific join points are roughly points in the ex-
ecution of a DSL program. In contrast to join points of
general-purpose languages, they are rather related to ac-
tions that are performed on abstractions of a domain (e.g.,
the executing a domain operation on a domain object). In
the context of ProcessDSL, the domain-specific events are
considered in this paper are (but not limited to) the follow-
ing: executions of a process or a task (similar to a method
execution in AspectJ [2]), retrieval of services from the reg-
istry, and Web service calls (similar to a method call).

Pointcut Lang.
Plug-inAdvice Lang.

Plug-in Join Point
Model Plug-in

Base
Language
Runtime

(or Compiler)

b

a

Aspect
Aspect

Aspect
3

iPOPART

c

Base
Program

(DSL)

1

in
st

ru
m

en
ts

fir
es

 J
P

s 4

2

Figure 2: The DSAL Plug-in Architecture of popart.

3. ASPECTS FOR DOMAIN-SPECIFIC BASE
LANGUAGES

The Pluggable and OPen Aspect Run-Time (popart for
short) is an open framework for defining aspect languages.
popart can be used to define aspect languages for any do-
main, as long as the base language infrastructure can be in-
strumented (cf Sec. 3.4). The support for aspects for domain-
specific base languages is implemented as a set of plug-ins
in popart. A plug-in consists of several classes that define
the syntax and semantics of a particular part of the aspect
language. To implement a DSAL in popart, the DSAL’s
implementer provides three plug-ins for: (a) the domain-
specific join point model; (b) the domain-specific pointcut
language; (c) the domain-specific advice language.

Fig. 2 shows this plug-in architecture for implementing
aspect-oriented DSLs. The aforementioned plug-ins are shown
as gray boxes (indices a–c). This architecture enables to
reuse default aspect-oriented semantics provided by the frame-
work. The addition of necessary domain abstractions are
made on top of these default aspect-oriented mechanisms.

Embedded DSLs [14] are used to implement the domain-
specific pointcut language and domain-specific advice lan-
guage plug-ins. The point of using embedded DSLs is sim-
plicity: the domain syntax is simply encoded as expressions
of the host language and the domain-specific semantics are
implemented as a library in the host language. The embed-
ded DSL principle allows us: 1) to reuse the default aspect-
oriented keywords and semantics for the DSAL, such as as-
pect and around; 2) general-purpose constructs in advice,
as the reuse of each in Fig. 1; 3) general-purpose operators
in pointcuts.

3.1 Domain-specific Join Point Models
Implementing an aspect language for a DSL requires to de-

fine what elements in a DSL semantics can be considered as
possible join points. A join point is a point in the execution
of a program, where an aspect can contribute functionalities.

Definition: A domain-specific join point is a join-point re-
lated to a domain abstraction (domain event, domain key-
word, etc.).

Definition: A domain-specific join point model is a specifi-
cation of all possible domain-specific join-points. A domain-
specific join point model is used to bind the domain-specific
aspect language to a domain-specific base language. A domain-
specific join point model determines which points in the ex-
ecution of DSL programs are visible to aspects and where
aspects can contribute functionality.

This preprint is provided by the contributing authors.

Domain-Specific Advice Language

Domain-Specific Pointcut Language

Domain-Specific Join Point Model

PrimitivePCD

context : HashMap

JoinPoint

<<Interpreter>>
AdviceDSL

1

2

3

category : String

ServiceSelection-
JoinPoint

serviceName : String
args : Object[]

ServiceCall-
JoinPoint

match(JoinPoint jp) : boolean

registry : Registry
categoryPattern : RegExpr

ServiceSelectionPCD

match(JoinPoint jp) : boolean

namePattern : RegExpr

ServiceCallPCD

matches matches

<<Interpreter>>
PointcutDSL

service_selection(pattern : String) : ServiceSelectionPCD
service_call(pattern : String) : ServiceCallPCD
...

ProcessPointcutDSL

encrypt(plainText,algorithm,key)
decrypt(cypherText,algorithm,key)
...

SecurityAdviceDSL Crypto Library

uses

<<creates>>

Figure 3: ProcessDSL’s Join Point Model (excerpt).

A domain-specific join point model can be defined accord-
ing to the following steps: (1) analyze the domain-specific
base language to find relevant points in the execution of DSL
base programs; (2) for each of these points, add a new kind
of join point into the join point model; (3) for each kind of
join point provide an instrumentation module that fires the
join point to the aspect engine.

In popart, a domain-specific join point model is defined
by extending an object-oriented framework that models the
generic aspect meta-model shared by all domain-specific plug-
ins. Fig. 3 schematically shows the extension for imple-
menting a specific join point model for the ProcessDSL lan-
guage presented in Sec. 2. The gray boxes contain framework
classes. The other classes correspond to the specification of
a domain-specific join point model for ProcessDSL.

The ProcessDSL join point model consists of the following
domain-specific join points, each with a specific context:

process execution Points at which a process instance is
executed. The context exposed to advices contains:
the process name, the task list.

task execution Points at which a task of a process is exe-
cuted. Context is: the task name, the activities.

service selection Points at which the registry is consulted
to select services of a certain category. Context is: the
category pattern that is used to select services and the
resulting set of selected services.

service call Points at which a service is called, e.g., a re-
mote call to a Web service via its service proxy. Con-
text is: the name of the service being called, the argu-
ments of the call, whether the invocation is remote or
local, and the result of the invocation.

Let us now consider the example of service call join points.
For implementing this join point type, we add the class
ServiceCallJoinPoint of Fig. 3 to the join point model of
ProcessDSL. Next, we have to provide an adequate instru-
mentation module. Specifically, the ProcessDSL interpreter
contains a class ServiceProxy that is responsible for in-
voking Web service, i.e., when encountering a service call
operation in DSL code, the ServiceProxy.call(...) will
be called, which generates a SOAP message that is send
out a Web service. At this point, the instrumentation must
fire instances of class ServiceCallJoinPoint to the popart
engine. We use an AspectJ [2] aspect to instrument the
DSL interpreter classes. E.g., for service call, we have im-
plemented an aspect that extracts context information out
of the interpreter classes, creates a ServiceCallJoinPoint,
and fires it to popart. For the other join points, similar
instrumentation modules fire instances of either Service-

SelectionJoinPoint, ProcessExecutionJoinPoint, or Task-
ExecutionJoinPoint

3.2 Domain-Specific Pointcut Languages
For writing pointcuts for a corresponding join point model

within popart, a pointcut language plug-in has to be imple-
mented. The domain-specific pointcut language enables to
select join points from a domain-specific join point model. A
domain-specific pointcut language reduces the semantic gap
that exists when using a DSAL composed of general-purpose
pointcut language and domain-specific advice language.

Definition: A domain-specific pointcut language is a lan-
guage that enables the specification of pointcuts using high-
level, domain-specific keywords. It can be attached to a
domain-specific join point model.

A domain-specific pointcut language is implemented as a
subclass of PointcutDSL of the framework, as shown Fig. 3.
While the domain independent operation on pointcuts can
be reused from PointcutDSL, e.g. boolean operations, new
keywords are defined for new domain-specific pointcut des-
ignators. For instance, for ProcessDSL, a subclass Process-
PointcutDSL is created that extends PointcutDSL and im-
plements keyword methods, such as service_call() and
service_selection().

In the following, a pointcut expression is given in the
pointcut language for the workflow DSL. The pointcut ex-
pression matches all remote invocations to services whose
operation name matches the regular expression with ”get.*”:

service call(”get.∗”) & if pcd { external }

The pointcut expression composes service_call and if_pcd

using “&”. While the pointcut designator service_call()

selects all service calls that operation name match the reg-
ular expression “get.*”, the if_pcd() pointcut designator
checks whether the service call is a remote call.

The pointcut language plug-in implements the keyword
semantics in ProcessPointcutDSL. For each pointcut des-
ignator keyword, a method is implemented with the cor-
responding keyword name, which takes the pointcut pa-
rameters, and returns an instance of PointcutDesignator

that is used to match against join point instances. E.g., on
receiving service_call(...), the pointcut language inter-
preter creates a ServiceCallPCD object (Fig. 3), passing the
regular expression “get(.)*”. The ServiceCallPCD selects
all ServiceCallJoinPoints with service names matching its
regular expression. Note that the semantics of the general-

This preprint is provided by the contributing authors.

1 aspect(name:”SecurityAspect”) {
2 around (service call (”.∗”) & if pcd { external }) {
3 encrypt(request,RSA,thisJoinPoint.service.pubKey);
4 def enc resp = proceed();
5 response = decrypt(enc resp,RSA,
6 thisJoinPoint.process.privKey);
7 } }

Figure 4: A Security Aspect for ProcessDSL.

purpose designator is reused from the superclass Pointcut-
DSL, that defines the corresponding keyword methods. Note
that in if_pcd the join point context can be accessed from
the condition expression inside an if-closure. In the above
pointcut expression, because ServiceCallJoinPoint defines
the property external, this join point context variable ex-

ternal is accessible in the if_pcd subexpression.
Note that, implementing a PointcutDSL as plug-in, which

is referenced by the advice language interpreter, has an im-
portant advantage: One can reuse both the pointcut and
advice languages independently from each other. Further,
a pointcut is simply an instance of a Pointcut subclass
and can be composed into a hierarchical structure using the
pointcut combinatorsNote also that since popart uses em-
bedded DSLs, i.e., pointcuts are simply expressions in the
host language, it is possible to extend the pointcut language
with new keywords without affecting other parts of the as-
pect language implementation.

3.3 Domain-Specific Advice Languages
Definition: A domain-specific advice language is a language
that enables to write advice with domain-specific keywords
and abstractions.

In order to create a fully-fledged domain-specific aspect-
oriented runtime environment, a third plug-in implementing
an domain-specific advice language has to be implemented.
This plug-in is integrated with a domain-specific pointcut
language and a (domain-specific) join point model.

In popart, domain-specific advice languages are imple-
mented as subclasses of AdviceDSL. For security concerns,
we define the SecurityAdviceDSL class that extends the
framework at extension point 3 in Fig. 3. Most important,
the domain-specific advice language interpreter implements
DSL keywords as methods that have the corresponding key-
word name (e.g., encrypt()). Moreover, the domain-specific
contexts discussed above are made available for advice im-
plementations. E.g., the variables request and response

implicitly refers to the outgoing and incoming message.
Fig. 4 shows the crosscutting concern identified in Sec. 2 as

a domain-specific aspect. Generic keywords of the popart
framework are used, e.g. around1. The pointcut is written
in the domain-specific pointcut language presented above.
The advice is written in the domain-specific advice language
SecurityAdviceDSL.

3.4 Implementation Details
popart extensively uses embedded DSLs [14] implemented

in Groovy [11]. We chose Groovy as an implementation lan-
guage because it supports various advanced language fea-
tures, such as, flexible syntax, closures, and a meta-object

1we use well-established aspect-oriented pointcut-and-advice
semantics for DSLs that are similar to AspectJ [2] semantics.

protocol, that enable the rapid implementation [9] of em-
bedded DSLs. Embedded DSLs are used for domain-specific
pointcut languages and domain-specific advice languages.

The boot process of popart is as follows: first, the popart
runtime is loaded; then, DSL programs are loaded (Fig. 2, in-
dex 1) and instrumented using the instrumentation modules
– currently AspectJ aspects (index 2); next, domain-specific
aspects are loaded (index 3); finally, during the execution
of DSL programs, the instrumentation will fire join points
(index 4) to the aspect kernel that composes in the aspects.

At runtime, everything is seamlessly integrated in the
same virtual machine: DSL programs, domain-specific as-
pects and the popart kernel. In a nutshell, the join points
that are fired are matched against the defined pointcuts and
if there is a match the corresponding advice is executed.
Note that the details of aspect composition are out of scope
of this paper, we refer to [10]. Domain-specific aspects may
contain keywords of several DSLs. When popart executes
the domain-specific aspects, it dispatches the encountered
keywords to the corresponding plug-in that defines the se-
mantics. Aspect keywords are dispatched to: 1) the plug-in
instance of AdviceDSL, 2) the plug-in instance of Pointcut-
DSL, 3) the popart kernel, 4) the base DSL infrastructure.

The ProcessDSL discussed in this paper has been imple-
mented as an embedded DSL, but this is not required. The
base DSL infrastructure only has to be available as Java
bytecode (e.g., implemented in Java or Groovy), this is be-
cause AspectJ is used to instrument the DSL infrastructure.

4. RELATED WORK
The abc compiler [4] allows to define new kinds of point-

cuts as extensions to the AspectJ semantics, but is not tar-
geted for DSALs and only weaves on Java.

The Aspect SandBox (ASB) [17] is a framework for proto-
typing alternative AOP semantics implemented in Scheme.
ASB has been improved with an extensible join point model
[22]. ASB allows defining new kinds of join points at the
cost of heavy impacts in the weaver implementation.

Several DSAL frameworks have been proposed for general-
purpose base languages, such as Java: Reflex [21], AweSome
[15], JAMI [12], and Dinkelaker et. al. [9]. They have
certain support for the composition of different extensions
and resolving conflict between them, however the differences
in their support for implementing DSALs are not important
for a comparison. They all only employ a join point model
for Java. Because new kinds of join points are out of scope,
weaving on DSLs is not supported.

XAspects [19] is an extensible system that defines a DSL
as an aspect. Other aspects are plug-ins that extend DSL
implementations with particular concerns. XAspects uses
special pointcuts for traversals, but cannot define new kinds
of pointcuts. XAspects uses the join point model of AspectJ
and does not support new join point types.

Strembeck and Zdun defined [20] an aspect-oriented DSL
for role-based access control. While they make an ad-hoc
implementation using a dynamic aspect language, our con-
tribution is generic. popart can be used to aspectize any
DSL. Moreover, its plug-in architecture allows us to use dif-
ferent languages for base programs and advice.

To our knowledge, only Heidenreich et al. proposed [13] a
generic approach for aspect-oriented DSLs that is based on
invasive software composition, i.e., source code rewriting.
Our paper differs on two points: 1) the popart framework

This preprint is provided by the contributing authors.

is dynamic, hence, allows to load and unload domain-specific
aspects at runtime, 2) while Heidenreich et al. assume that
the base program and the advices are written in the same
language, popart allows to use different domain-specific lan-
guages in the base program and the advice.

5. CONCLUSION AND FUTURE WORK
We presented the popart framework that supports the

implementation of aspect-oriented DSLs. It is based on the
concept of domain-specific join point model. This concept
enables to deal with aspect composition only based on do-
main relevant events. popart provides a plug-in architec-
ture for implementing aspect languages for domain-specific
languages.

A DSL can be integrated with the framework by defining a
domain-specific join point model, a domain-specific pointcut
language, and a domain-specific advice language. popart
relieves the DSAL designer of implementing common aspect
semantics – only additional domain abstractions and seman-
tics must be integrated into the framework.

We have implemented a domain-specific aspect language
for a simple workflow language as an application case. The
sample DSL’s design has been inspired from complex work-
flow languages, such as BPEL. The aspect-oriented pro-
gramming prototype for the DSL is implemented (whereby
reusing existing libraries for complex domain operations such
as encryption) in three plug-in consisting of 15 classes, with
less than 500 LOC. The prototype supports common aspect-
oriented features, such as general-purpose pointcut designa-
tors (e.g., and, or, not, cflow, if) and advice keywords
(e.g, thisJoinPoint, proceed). Moreover, the ProcessDSL
prototype comes with other features of popart discussed
in [10]: semantic variation in aspect languages at runtime;
dynamic aspects; and resolution of aspect interactions.

Future work will address the current limitations: 1) mea-
suring and improving execution speed 2) implementing miss-
ing features such as inter-type declarations, and 3) compo-
sition of different domain-specific advice languages and the
resolution of possible conflicts between language definitions.

The popart source code and the implementation of the
example ProcessDSL can be downloaded from:
http://www.stg.tu-darmstadt.de/popart.

6. ACKNOWLEDGMENTS
This work was partly supported by the feasiPLe project,

Federal Ministry of Education and Research, Germany.

7. REFERENCES
[1] A. Arkin, S. Askary, B. Bloch, et al. Web Services

Business Process Execution Language 2.0, OASIS
Standard, 11 April 2007.

[2] AspectJ Home Page.
http://www.eclipse.org/aspectj/.

[3] P. Avgustinov, T. Ekman, and J. Tibble. Modularity
First: A Case for Mixing AOP and Attribute
Grammars. In AOSD’2008, 2008.

[4] P. Avgustinov, J. Tibble, A. Christensen, L. Hendren,
S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor,
D. Sereni, and G. Sittampalam. Abc: An Extensible
AspectJ Compiler. In AOSD’2005, 2005.

[5] A. Bagge and K. Kalleberg. DSAL =
Library+Notation: Program Transformation for
Domain-Specific Aspect Languages. In DSAL
Workshop, 2006.

[6] A. Charfi. Aspect-Oriented Workflow Management:
Concepts, Languages, Applications. VDM Verlag Dr.
Mueller, 2008.

[7] T. Cleenewerck, J. Noyé, J. Fabry, A.-F. Lemeur, and
E. Tanter, editors. Summary of the Third Workshop
on Domain-Specific Aspect Languages (DSAL’08),
2008.

[8] T. Dinkelaker, A. Johnstone, Y. Karabulut, and
I. Nassi. Secure Scripting Based Composite
Application Development: Framework, Architecture,
and Implementation. In Conference on Collaborative
Computing, 2007.

[9] T. Dinkelaker and M. Mezini. Dynamically Linked
Domain-Specific Extensions for Advice Languages. In
DSAL’2008, 2008.

[10] T. Dinkelaker, M. Mezini, and C. Bockisch. The Art of
the Meta-Aspect Protocol. In AOSD’2009, 2009.

[11] The Groovy Home Page.
http://groovy.codehaus.org/.

[12] W. Havinga, L. Bergmans, and M. Aksit. Prototyping
and Composing Aspect Languages Using an Aspect
Interpreter Framework. In Proceedings of
ECOOP’2008, page 180. Springer, 2008.

[13] F. Heidenreich, J. Johannes, and S. Zschaler. Aspect
Orientation for Your Language of Choice. In Proc.
Workshop on Aspect-Oriented Modelling at MoDELS
2007, 2007.

[14] P. Hudak. Building Domain-Specific Embedded
Languages. ACM Computing Surveys,
28(4es):196–196, 1996.

[15] S. Kojarski and D. Lorenz. AweSome: An Aspect
Co-Weaving System for Composing Multiple
Aspect-Oriented Extensions. In OOPSLA’2007, 2007.

[16] C. Lopes. D: A Language Framework For Distributed
Programming. PhD thesis, Northeastern University,
1997.

[17] H. Masuhara, G. Kiczales, and C. Dutchyn. A
Compilation and Optimization Model for
Aspect-Oriented Programs. In Proc. CC 2003, volume
2622 of LNCS, 2003.

[18] D. Rebernak, M. Mernik, H. Wu, and J. Gray.
Domain-Specific Aspect Languages for Modularizing
Crosscutting Concerns in Grammar. In DSAL’06,
2006.

[19] M. Shonle, K. Lieberherr, and A. Shah. XAspects: An
Extensible System for Domain Specific Aspect
Languages. In OOPSLA, 2003.

[20] M. Stremberck and U. Zdun. Definition of an
Aspect-Oriented DSL using a Dynamic Programming
Language. In Proceedings of the Workshop Open and
Dynamic Aspect Languages’2006, 2006.

[21] E. Tanter and J. Noyé. A Versatile Kernel for
Multi-language AOP. GPCE 2005, 2005.

[22] N. Ubayashi, H. Masuhara, and T. Tamai. An AOP
Implementation Framework for Extending Join Point
Models. In Workshop on Reflection, AOP and
Meta-Data for Software Evolution, 2004.

http://www.stg.tu-darmstadt.de/popart
http://www.eclipse.org/aspectj/
http://groovy.codehaus.org/

	Introduction
	Problem Statement
	Aspects for Domain-Specific Base Languages
	Domain-specific Join Point Models
	Domain-Specific Pointcut Languages
	Domain-Specific Advice Languages
	Implementation Details

	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

