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Measuring models

Abstract Model-Driven Engineering (MDE) is an ap-
proach to software development that uses models as pri-
mary artifacts, from which code, documentation and tests
are derived. One way of assessing quality assurance in
a given domain is to define domain metrics. We show
that some of these metrics are supported by models. As
text documents, models can be considered from a syn-
tactic point of view i.e., thought of as graphs. We can
readily apply graph-based metrics to them, such as the
number of nodes, the number of edges or the fan-in/fan-
out distributions. However, these metrics cannot leverage
the semantic structuring enforced by each specific meta-
model to give domain specific information. Contrary to
graph-based metrics, more specific metrics do exist for
given domains (such as LOC for programs), but they
lack genericity. Our contribution is to propose one met-
ric, called σ, that is generic over metamodels and allows
the easy specification of an open-ended wide range of
model metrics.
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1 Introduction

Model-Driven Engineering (MDE) is an approach to soft-
ware development that uses models as primary artifacts,
from which code, documentation and tests are derived.
In this context, a model can be seen as the abstraction
of an aspect of reality for handling a given concern in
a specific domain. In MDE, the meaning of a model is
itself defined with another model, called a metamodel.
Complex systems typically give rise to more than one
model because many aspects are to be handled.

One way of assessing quality assurance in a given do-
main is to define domain metrics from expert know-how,

best practices or statistical analysis. As text documents,
models can be considered from a syntactic point of view
i.e., thought of as graphs. We can readily apply graph-
based metrics to them, such as the number of nodes, the
number of edges or the fan-in/fan-out distributions (see
for example [1,2]). However, these metrics cannot lever-
age the semantic structuring enforced by each specific
metamodel to give domain specific information.

Contrary to graph-based metrics, more specific met-
rics do exist for given domains (such as LOC for pro-
grams), but they lack genericity. The lines of codes per
method/function has been proven to be a software qual-
ity attribute [3]. As LOC or other code-centric software
metrics, each domain has its own quality metrics.

An applied research program named Measurement of
Complexity [4] lists more than one hundred metrics of
complexity of importance in engineering. As an applica-
tion of this program, a human review of textual docu-
ments has been done on four real world systems to com-
pute the metrics of complexity. Complexity is not an is-
sue of our investigation. However this program concludes
on the need to facilitate the definition and computation
of metrics and motivates this work.

The scope of our research is the definition of metrics
at a higher level of abstraction than code, independently
of the domain, while remaining rich enough for the do-
main expert. Our contribution is to propose one metric,
called σ, that is generic over metamodels and allows the
easy specification of an open-ended wide range of model
metrics

The remainder of this chapter is organized as follows.
We first give an introduction on model measurement in
section 2. In section 3, we then introduce a generic met-
ric, grounded in set theory and first-order logic. This
metric is questionned with established metric property
frameworks. We then discuss implementation issues. To
show the genericity of our approach, we present in sec-
tion 4 three case studies from various domains, and we
show in section 5 that this also applies to the metamodel
measurement. We finally discuss future research direc-
tions (section 6) and conclude.
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2 State of the art

2.1 Dedicated model measurement

Metamodel measurement Ma et al. [5] compare different
versions of the UML metamodel using OO metrics de-
fined in [6]. Ma et al. [7] define patterns linked to the
lifecycle of metaclasses, and study them on different ver-
sions of the UML metamodel. This work is similar in
spirit to those made at the OO level [8–10].

MDE processes measurement Berenbach et al. [11] list a
number of metrics for model driven requirements devel-
opment and enounce some good practices. The Model-
ware project delivered three documents [12–14] in which
several metrics about MDE processes are defined.

UML models measurement Previous works about the mea-
surement of UML models follows the same decomposi-
tion as the UML artifacts themselves. Some authors ad-
dress the measurement of class diagrams (see [15] for a
survey), others the measurement of dynamic models [16,
17], component models (e.g., [18]), and OCL expressions
[19,20].

Synthesis These works are dedicated to particular MDE
artifacts i.e., metamodels, processes, UML models. They
do not note that all this artifacts are models too, w.r.t. a
metametamodel, a process metamodel or the UML meta-
model. These contributions do not leverage this idea for
defining a generic metric usable at any moment of prod-
uct life-cycle, from requirements to implementation.

2.2 Metamodel based measurement of OO programs

Misic et al. [21] express a generic object-oriented meta-
model using Z. With this metamodel, they express a
function point metric using the number of instances of
a given type. They also express a previously introduced
metric called the system meter. Reissing et al. [22] ex-
tends the UML metamodel to provide a basis for met-
rics expression and then use this model to specify known
metric suites with set theory and first order logic.

Harmer et al. [23] expose a concrete design to com-
pute metrics on source code. The authors create a rela-
tional database for storing source code. This database is
fed using a modified compiler. Metrics are expressed in
SQL for simple ones, and with a mix of Java and SQL
for the others. El Wakil et al [24] use XQuery to express
metrics. Metrics are then computed on XMI files. Ba-
roni et al. propose in [25] to use OCL to specify metrics.
They use their own metamodel exposed in a previous pa-
per. Likewise, in [26], the authors use Java bytecode to
instantiate the Dagstuhl metamodel and specify known
cohesion metrics in OCL.

These works are centered around the issue of OO met-
rics and are not metamodel independent. They show that
it is useful to ground metrics into the semantic of source
code i.e., its metamodel. It seems possible to generalize
the idea and define precisely generic metrics on top of
metamodels, set theory and logic. It is also to be noted
that these approaches do not explore the modularity of
metrics.

2.3 Generic metrics for OO measurement

Mens et al. [27] define a generic object-oriented meta-
model and generic metrics. They then show that known
software metrics are an application of these generic met-
rics. Alikacem et al. [28] propose a generic metamodel
for object oriented code representation and a metric de-
cription language.

These two contributions emphasize on a generic way
to define metrics. However, they do not provide applica-
tions of the genericity outside the scope of OO metrics.

2.4 Generic model measurement

Saeki et al. [29] specify the definition of metrics in OCL
as part of the metamodel. Saeki et al. do not attach the
definition of metrics to any particular domain and un-
derlines in a future research agenda the need for defining
various domain metamodels, domain metrics and sup-
porting tools.

Guerra et al. [30] propose to visually specify metrics
for any Domain Specific Language and introduce a tax-
onomy of metrics. Tool support is provided in the Python
and Atom3 environment. We share the motivation of this
paper and provide further facts on the problem of model
measurement and on the solution. Our case studies give
a different perspective on the issue.

3 The generic σ metric

In this section, we present a model metric, called σ. The
σ metric is a generic metric. It means that an executable
metric is a specialization of σ. The genericity allows high
level specification of metrics and a simplified implemen-
tation. Considering the Goal Question Metrics approach
[31], the σ metric is a generic answer to a set of questions
related to model quality:

Goal Improve the model quality from the modeler point
of view.

Question #1 What model metrics can be related to func-
tionality?

Question #2 What model metrics can be related to re-
liability ?

Question #3 What model metrics can be related to main-
tainability?
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Metrics The family of σ metrics.

In this section, we first define a model in the model-
driven engineering (MDE) sense in order to clearly ground
the generic metric. Then, we introduce the notion of
filtering function which is the kernel of the proposed
generic model metric. We close the presentation with
theoretical arguments and implementation issues.

3.1 Definition of a MDE model in set theory

A model, in the Model Driven Engineering (MDE) termi-
nology, is at first glance a directed graph. A MDE model
also contains information on nodes, sometimes refered as
slots, which contain primary information. A model also
embeds its structure i.e., the types of nodes, the types
of edges, and the types of slots. The figure 1, inspired
from [32], shows the different viewpoints on a model: a
graph in the upper left part, a graph containing data in
the upper right part, or a graph containing structured
data in the lower left part where the structure is defined
with a metamodel represented in the lower right part.

We define a model as:

Definition 1 A model M is

M = ((V ;E;S); (C;R;A); (Tv;Te;Ts))

where: V is the set of nodes, E a set of directed edges
between nodes, which are elements of (V × V ), S is the
set of slots, C is the set of classes, R is the set of re-
lationships between classes i.e., elements of (C × C), A
is the set of attributes of classes i.e., elements of (C ×
{boolean, numeric, etc.}), Tv contains bindings between
nodes and classes i.e., a set of elements of (V × C), Te
contains bindings between edges and relationships i.e., a
set of elements of (E×R), Ts contains bindings between
slots and attributes i.e., a set of elements of (S ×A).

Note that this definition includes support for lan-
guages such as Java or MOF, where one has classes and
primitive types.

For convenience, we later use three functions:

– source which maps each edge to the source node of
the edge;

– target which maps each edge to the target node of
the edge;

– type which maps each node to a class c ∈ C.

3.2 The filtering functions

A filtering function is a function that tests a boolean
condition on a given node. Applied to a set of nodes, it
can be used as a filter.

Definition 2 A filtering function φ is a morphism from
the set of nodes to the truth values.

φ : V → {true; false}

x 7→ φ(x)

φ is a boolean function, it thus can be a boolean
formula of sub-filtering boolean functions. This function
can be composed of an arbitrary unlimited number of
conditions e.g., φ = φ1 ∧ (φ2 ∨ ¬φ3). In figure 1, the
filtering function φ(x) = (type(x) = City) is true for two
out of three model elements: the Frankfurt node and the
Darmstadt node.

We define the core filtering functions as: a test on
the type, a test on a slot, a size test and a λ-test on a
collection:

Test on the type This tests the type of an object of the
model with respect to the name of a class. It is equiva-
lent to the isInstance method of the Java class Class.

Test on a slot value This evaluates the value of a slot
(a primitive type in Java, an EDataType in Eclipse
Modeling Framework) with respect to a constant.

λ-Test on a collection This evaluates a sub-filtering func-
tions on each member of the multiplicity element.
This test is either a test at least one or for all and
introduces a λ parameter.

Test on the size of a collection This evaluates the num-
ber of elements of a collection.

We chose these core filtering functions because they are
sufficient for our case studies. Note that filtering func-
tions are not closed in their definition and can include
refinements so as to express more powerful statements.
For example, it is conceivable to add regular expressions
in slot tests on string values.

For instance, here are some examples of filtering func-
tions refering to figure 1:

– φ(x) = (type(x) = City)
– φ(x) = (x.name = ”A5”)
– φ(x) = (size(x.roads) > 3)
– φ(x) = (∃λ ∈ x.destination|λ.name = ”Darmstadt”)
– φ(x) = (∀λ ∈ x.destination|λ.inhabitants > 100000)

Filtering functions involve information from the meta-
model e.g., City or inhabitants. They involve elements of
C,R and A. Hence, they are at the same level as meta-
models and are grounded into the structure of the mod-
els. The evaluation of a filtering function relies on the
binding between a model and its structure i.e., Tv, Te,
Ts.

Set of Nodes As defined above, one of the components
of a model is a set of nodes. It is possible to specify a
subset of nodes X satisfying a filtering function. This is
noted SoN(φ)(V ) (SoN is the acronym for set of nodes).

Definition 3 SoN(φ)(V ) = {n ∈ V |φ(n)}.
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Fig. 1 Models from different points of view

3.3 Definition of the σ metric

The generic σ metric is derived from SoN and is the
cardinality of a set of nodes given a filtering function.
σ refers to the classical Σ mathematical symbol which
denotes an iteration over a set of elements.

Definition 4 σφ(V ) ∈ N =|SoN(φ)(V )|.

The σ metric characterizes an open-ended wide range
of model metrics that are illustrated in sections below.

3.4 Theoretical validation

In this section, we confront the σ metric with theoreti-
cal matters: the type, the scale, the dimension and the
reliability of the σ metric.

Type Several frameworks exists for validating software
metrics e.g., [33–35]. We chose [33] to validate the met-
rics proposed in this paper because it is a formalized,
yet convenient synthesis of previous works. Briand et al.
enounced [33] formal properties for five types of software
metrics: size, length, complexity, cohesion and coupling
metrics. The σ metric satisfies the formal properties of
size metrics Size.1, Size.2 and Size.3 :

Size.1 : Nonnegativity σ(SoN(V )) ≥ 0 by definition of
a set;

Size.2 : Null value if SoN(V ) = ∅ ⇒ σ(SoN(V )) = 0
by definition of a set;

Size.3 : Module Additivity (V = V1 ∪ V2 and V1 ∩ V2 =
∅)⇒ σ(SoN(V )) =σ(SoN(V1)) + σ(SoN(V2)) (idem
for E1,E2,E)

The σ metric can then be considered as a generic size
metric applicable to any domain.

Scale The σ metric is a kind of count, hence is on an ab-
solute scale. According to [36], all arithmetic analysis of
the resulting count is meaningful, and according to [37],
this scale permits a full range of descriptive statistics to
be applied. This is true for a given filtering function, as
discussed in the next paragraph.

Dimensional analysis Dimensional analysis aims to de-
termine a consistent assignment of units. A dimension
is a generalization of a unit of measure [37]. Since the σ
metric is generic, it has no dimension associated with. It’s
a number of objects according to a filtering function. To
this extent, a filtering function defines a dimension per
se. Hence, one cannot directly perform arithmetics on
different σ i.e., σφ1(V ) and σφ2(V ). For instance, sum-
ming σφ1(V ) and σφ2(V ) raises the same issue as sum-
ming a time and a length in physics. Derived measure-
ment from σ metrics should be made carefully.

Measurement errors The σ metric does not have any
measurement errors. It is theoretically reliable. Note that
implementations still need to be tested or statically ver-
ified with the adequate methods to ensure its practical
reliability.

Conclusion With respect to theoretical facts, the σ met-
ric is a generic, reliable size metric on which descriptive
statistics can be applied.

3.5 Implementation

We discuss below the reasons making the implementation
of model metrics a difficult issue.
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Non-programmer use The most appropriate person for
defining domain metrics is a domain expert. He rarely
has skills in programming. Hence, he needs to specify
what he wants and to delegate the implementation to
others . This dramatically increases the cost of definition
and collection of model metrics. This observation is a
strong motivation to define a simple and intuitive DSL,
a coherent interface to be used by the domain expert for
defining metrics.

Libraries / Framework Always for cost and productivity
reasons, a good language for implementing metrics has
the libraries to access models and their metamodels. It
is very costly to develop an ad hoc and reliable parser,
database connector, or binding to an existing modeling
framework.

Ability to access to the metamodel The language or li-
brary for implementing metrics should include an easy
way to navigate through the model and to access to the
metamodel. For instance, considering a model element,
there should be a way to access to the referenced ele-
ments as well as the metaclass and its attributes.

Non-intrusivity We have experienced that it is often tempt-
ing to pollute models with metrics concerns. For exam-
ple, to add an attribute marked : boolean to the root class
of the domain model, to mark visited objects. However,
this practice violates the separation of concerns principle.
A good metrics design practice is totally non-intrusive
with respect to the semantic of the model. In the pre-
vious example, the need to mark visited objects implies
the use of Map : Object→ Boolean.

Our implementation One can find in the literature sev-
eral proposals for the implementation of model metrics
(see section 2) e.g., Java, SQL, Python, Xquery, XML-
based DSL, OCL, and a graphical language. Proposals
mix some of these languages. These proposals do not
adress all the issues cited above. We based our approach
on the model-oriented programming language Kermeta
[38].

Kermeta is a language based upon the EMF API.
This facilitates the accesses to models and the navigation
through models and metamodels. Furthermore, our in-
dustrial partners generally use Eclipse Modeling Frame-
work (EMF) models. Kermeta features closures, which
are of great help for the filtering functions. Indeed, a fil-
tering function written in Kermeta is syntactically close
to the underlying semantic hence very concise.

Polymorphism is useful to express modularized met-
rics. An example of code is shown on figure 2. An abstract
class SigmaMetric encapsulates the generic code of the
generic σ metric. A class NumberOfCityMetric is defined
as a subclass of the SigmaMetric class. NumberOfCity-
Metric implements the filtering function φ and poten-
tially delegates the definition of a subfiltering function

abstract class SigmaMetric {
// generic implementation part of the sigma metric

// specific part: an abstract method to be implemented
operation phi(o : Object) : Boolean is abstract

} // end class

class NumberOfCityMetric inherits SigmaMetric {
operation phi(o : Object) : Boolean is do

result := (o.getMetaClass == City) and self.phi1(o)
end

operation phi1(o : Object) : Boolean is do
return true

end
} // end class

Class NumberOfCityConnectedToA5Metric inherits NumberOfCityMetric {
operation phi1(o : Object) : Boolean is do

return (o.asType(City).roads.exists{ x | x.name == "A5"})
end

} // end class

Fig. 2 Implementation : excerpt of Kermeta code

φ1 to subclasses by polymorphism. NumberOfCityCon-
nectedToA5Metric overrides φ1 to compute the number
of cities connected to the road named A5.

Kermeta satisfies all the issues cited above, except the
first one. Even if a filtering function written in Kermeta
is syntactically close to its semantic, a domain expert
can not feel comfortable with writing pieces of Kermeta
code. It is outside of the scope of this contribution to
specify visual or textual syntax usable by the domain
expert.

The prototype involves two main abstract classes Re-
flectiveWalk and SigmaMetric. To define a σ model met-
ric, the user just need to create a new class inheriting
from SigmaMetric and to write the associated filtering
function.

4 Applications of the σ metric

In this section, we present three case studies so as to
illustrate the genericity and the feasibility of the σ met-
ric. We first show that the σ metric allows the compu-
tation of logical lines of code in usual languages such as
Java, the value-added of this approach is the ease of use
compared to equivalent existing approaches. Then, we go
beyond software metrics and consider non code centric
artifacts such as requirements and system engineering
metrics. The application of the σ metric in these various
domains shows the genericity of the σ metric. Finally,
since metamodels can be considered as models too, we
present results of the σ metric at computing metamodel
metrics in a full section.

4.1 Case study: lines of code (LOC)

Kan states that “the lines of code (LOC) metric is any-
thing but simple” [39] (p.88). Indeed, there are numerous
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Fig. 3 The Java to EMF process

definitions of LOC, depending on authors and language
(see [39]). Early LOC definitions follow a physical i.e., a
representational point of view. An example is the count
of the non-blank lines in source files. More sophisticated
LOC definitions focus on logical statements (see [39,37]).
This raises the technical issue of parsing the source files
to access the semantics. In this section, we do not pro-
pose yet another LOC definition. We demonstrate that
considering traditional programs as model, one gets es-
sential LOC building blocks by applying the generic σ
metric.

LOC semantic building-blocks are an application of
the σ metric. They are numerous, among them are the
number of methods, number of conditionals, number of
blocks. For sake of readability, we do not list all of them.
A representative part of them is shown in the results of
our case study.

In this case study, we consider the Java programming
language because of its wide diffusion. Furthermore, nu-
merous open-source Java software packages are available.
Since our implementation is based on the Eclipse Mod-
eling Framework (EMF), we needed a way to transform
Java source code into EMF models (as XMI files). We
have used the SpoonEMF tool1. SpoonEMF is a binding
between Spoon and EMF. Spoon [40] provides a com-
plete and fine-grained Java metamodel where any pro-
gram element (classes, methods, fields, statements, ex-
pressions, etc.) is accessible. This process finally trans-
forms a whole Java software into a single XMI model file
that can be natively processed with Kermeta.

The whole process is sketched on figure 3.
From this model, our prototype is able to compute

the specific σ metrics values. For example, it produces
the number of statements; number of assignments; num-
ber of conditionals; number of blocks.

To demonstrate the feasibility and the scalability of
our approach, we have chosen five open-source Java soft-
ware packages to be represented as models:

UmlGraph UmlGraph allows the declarative specifica-
tion and drawing of UML class and sequence dia-
grams.

1 Please contact the INRIA Triskell team for further infor-
mation

log4j log4j is a logging library. It provides an advanced
service of logging, with emphasis on the performance
of determining if a logging statement should be logged
or not.

org.eclipse.osgi org.eclipse.osgi is the heart of the Eclipse
IDE. It’s the Eclipse implementation of the Open Ser-
vices Gateway Initiative (OSGI) standards.

regexp regexp provides a regular expression Java library.
BCEL BCEL is a Byte Code Engineering Library (BCEL)

intended to give users a convenient possibility to ana-
lyze, create, and manipulate (binary) Java class files.

For the sake of replication, the models used in this case
study are available on the web2.

In table 1, we show our results on the Java software
packages listed above. Table 1 shows us that the σ met-
ric is applicable to computer languages. Furthermore,
it shows us that our approach scales with the model
size (the org.eclipse.osgi model has 507798 model ele-
ments and 703360 references between them). Each line
of the table compares the software packages under study
with repect to a rigorously defined point of view. For in-
stance, for a similar number of class, the BCEL software
uses much less try/catch constructs than org.eclipse.osgi.
Each column of the table is a vector that characterizes
the software packages in a multi-dimensional space.

Measuring LOC with models as an application of the
generic σ metric is easy. Spoon and SpoonEMF are com-
ponents of our approach, yet have not been developed
on purpose. One does not need to go inside a compiler
or an interpreter, neither write a parser, which are both
complex tasks.

One can object that much of the work has been moved
on transformation from source code to models. But this
task can be shared with other discplines such as aspect
weaving or testing. Indeed, Spoon and SpoonEMF are
not at all dedicated to metrics. Note that this burden
does not exist for new languages when the designers
make them directly available as models.

In this section, we showed that LOC building blocks
are σ metrics. We presented our approach and our pro-
totype to prove the feasibility of collecting LOC σ met-
rics on large-scale open-source software projects. Unlike
traditional approaches, measuring LOC with models is
easy. Collecting semantic metrics on source code could
be done before. The added value of our approach is the
simplicity. Firstly, it is easier to define and compute met-
rics on code represented as a model than on raw source
files. Secondly, the application of a generic metric inside
a framework to compute logical LOC is no more than a
few lines of code i.e., the filtering functions.

2 http://www.monperrus.net/martin/MDSDIQA-models.
zip
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NumberOf log4j-1.2.14 umlgraph-4.1 eclipse.osgi-3.2 regexp-1.4 bcel-5.2
TypeParameterReference 125 0 306 3 54
Method 1353 63 3389 119 2569
FieldReference 3713 373 12061 1156 7947
Catch 156 3 498 24 133
TypeReference 44874 5781 145149 6290 85155
For 104 8 867 32 379
LocalVariableReference 3379 388 16107 991 6503
Field 768 58 2183 137 983
Assignment 941 117 2785 253 1612
VariableAccess 5436 638 23221 1362 11415
Case 111 9 287 181 556
If 898 109 4392 263 1502
Parameter 1340 75 3621 159 2831
Constructor 295 11 391 22 545
ExecutableReference 7624 785 22913 1345 15409
Class 247 11 334 16 345
ParameterReference 2057 250 7114 371 4912
BinaryOperator 1874 269 8165 705 4922
ArrayAccess 127 63 1890 151 905
Return 932 60 3368 181 1416
Literal 3584 493 11747 1071 6691
Invocation 4842 484 13959 847 9392
Block 2979 164 7754 557 5283
LocalVariable 1327 126 5136 239 2117
ArrayTypeReference 1104 314 14461 724 5801
FieldAccess 3713 373 12061 1156 7947
NewClass 725 51 1840 127 1105
PackageReference 43691 5415 139303 6047 83183
UnaryOperator 264 33 1750 226 752
Try 139 4 530 19 129

Table 1 Results of the σ LOC metrics on large-scale Java software packages

4.2 Case study: requirements metrics

Since measurement is a tool to know if one is reaching
the goal of building high quality requirements, several
works have been done on defining requirements metrics
(a survey can be found in [41,42]). The need for require-
ments metrics is also illustrated by the metric features
of commercial tools e.g., Telelogic Doors. In this section,
we aim to show that some requirements metrics are a
special case of the generic σ metric.

Our methodology consists of taking a previous contri-
bution on requirements metrics, extracting a metamodel,
and identifying σ metrics.

Davis et al. define [43] a set of attributes that con-
tributes to evaluate the quality of a requirements speci-
fication. 18 of the 24 quality attributes presented in this
article have a mathematical metric formulation. These
formulae are derived from the following metrics building
blocks: the total number of requirements; the number
of correct requirements; the number of stimulus input;
the number of state input; the number of functions cur-
rently specified; the number of unique functions speci-
fied; the number of pages; the number of requirements
that describe external behavior; the number of require-
ments that directly address architecture or algorithms of
the solution.

All but the number of pages are concepts which are
easily captured in a metamodel. In figure 4, we derive a
metamodel which permits to compute the metrics above.
This is a backbone for a bigger requirements metamodel.
Except for the number of unique functions specified, all
these metrics are σ metrics.

Fig. 4 The requirements metamodel extracted from [43]

Note that Davis et al. also use the following param-
eters: C(Ri) is the cost necessary to verify presence of
requirement Ri; T (Ri) is the time necessary to verify
presence of requirementRi. The notations C and R (resp.
cost and requirement) are from [43] and are totally dif-
ferent of the notations of section 3. The integration of
this information in the metamodel is straightforward and
represented in the figure 4.

It is possible, yet outside the scope of this chapter
to apply this methodology to other requirements met-
rics contributions e.g., [44], so as to create a comprehen-
sive requirements metamodel. We mainly aim to show
the genericity of our contribution in the field of require-
ments engineering. A threat to our reasoning remains.
One misses requirements models and case studies. Con-
trary to the previous section, where we have manipu-
lated large scale models of source code , we are not able
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to produce metric values for this requirement metamodel
due to the absence of models. However, the integration
of model-driven requirements engineering in industrial
processes shall solve this issue in a near future. Another
solution to requirements metrics is to analyze natural
language e.g., [45]. It is to be noted that these methods
are primarily at a syntactic level i.e., deals with natural
language. Our approach is totally at the model level and
deals with the concepts, not the syntax.

4.3 Case study: system engineering metrics

As said in the introduction, an applied research pro-
gram named Measurement of Complexity [4] driven by
the DGA concludes on the need to automate the compu-
tation of system engineering metrics in a semantic man-
ner for better reliability and affordable costs. This report
grounds this case study.

This report lists 122 indicators that might measure
a kind of complexity of the system. These indicators ad-
dress a wide range of domains: requirements engineer-
ing; environment specification; software engineering; log-
ical architecture; project management; mechanical and
chemical architecture. This is a good artifact to illus-
trate the genericity of our contribution, genericity over
the domain and over the product lifecycle.

For instance, from the metrics related to informa-
tion systems, we have derived a metamodel i.e., we have
listed the domain concepts of an information system e.g.,
Server, Protocol, Service, etc. The implementation in
Kermeta is outlined in figure 5. This implementation of
the metamodel associated with the σ metric enables the
computation of most of the information system metrics
identified in the report e.g., the number of protocols; the
number of parallel databases; the number of file formats;
the number of servers.

class InformationSystem inherits System
{ reference servers : Server
reference subSystems : InformationSystem[0..*] }
class Interface inherits Aspect::NamedElement,

Aspect::VersionnedElement, Aspect::DescriptedElement {}
class NetworkService
{ reference protocols : Protocol[0..*] }
class PersistenceService inherits Service { }
class DataBase inherits PersistenceService
{ attribute replicated : DataType::boolean }

Fig. 5 Excerpt of the metamodel implemented in Kermeta

Exploring the whole list of indicators, it turns out
than 45 out of 122 (37%) are metrics of the form num-
ber of i.e., an application of the σ metric. The table
2 shows that depending on the domain, the σ metric
is more or less useful. The domain of software archi-
tecture is the best target, with 19 σ metrics out of 21
metrics. Thus, our approach really facilitates the defini-
tion and collection of metrics for model-based software

Requirements engineering 12/28
Ex: Number of requirements without an associated test
Environment specification 2/6
Ex: Number of variables
Software architecture 19/21
Ex: Number of external protocols for interoperability
Logical architecture 9/34
Ex: Number of configurations
Mechanical and chemical architecture 1/21
Ex: Number of materials
Project management 2/12
Ex: Number of stakeholders

Table 2 Complexity indicators which are an application of
σ.

architectures. The domain of mechanical and chemical
architecture is the worst target of the σ metric. To our
knowledge, the reason is that these engineering fields are
better described with mathematical models. Hence, the
associated interesting metrics also are at a mathematical
level. The domain of requirements engineering seems to
be partly covered by the σ metric. However, most of the
sixteen non-sigma metrics are totally subjective e.g., the
distance of the required product from technological lim-
its. In other words, computable requirements engineering
metrics are well covered by the σ metric as discussed in
the previous section.

This case study showed that a significant number of
metrics identified outside the scope of model-driven engi-
neering are applications of the σ metrics. Our contribu-
tion adresses totally 37% of metrics listed in the report.
The other 63% metrics are mostly pure mathematical or
physical ones, hence outside the scope of model-driven
metric development. Our approach is promising since it
solves the majority of logical metrics.

5 Genericity applied to metamodel metrics

The generic metric addresses the issue of defining and
collecting metrics for a given domain. If the considered
domain is metamodeling, the generic metric gives infor-
mation on metamodels themselves. Our last case study
is the metamodel measurement. Indeed, metamodels are
important artifacts in Model Driven Engineering and we
believe that it is essential to know their size, quality and
complexity. For these purposes, metrics are to be defined,
validated and implemented. This permits to give a nu-
merical and objective vision of metamodels. Considering
metamodels as models, we show that some of these met-
rics are an application of the σ metric presented above.

5.1 Metamodels: definition and implementation

There is no clear consensus on the definition of a meta-
model. In [32], Kühne makes a contribution to the clar-
ification of the definition, that “may drastically simplify
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disputes about fundamental issues, such as the meta-
model definition”. We refer to this paper for the essence
of a metamodel and follow a practical approach to define
a metamodel: based on the EMOF specification [46], we
outline the pratical differences between an EMOF meta-
model and a class model, from typed object-oriented pro-
gramming languages.

An EMOF model is composed of instances of classes
from the EMOF package. The EMOF package is the re-
sult of the merge of five packages UML::Basic (from the
UML infrastructure [47]), MOF::Common, MOF::Identi-
fiers, MOF::Reflection and MOF::Extension. The main
differences with object-oriented models are:

1. collections are explicitly typed;
2. collections have explicit lower and upper bounds;
3. collections are explicitly unique and/or ordered;
4. associations are defined as the binding between two

references;
5. references can have containment role.

Note also that: EMOF differentiates references to prim-
itive types (integer, boolean, etc.) and references to classes;
EMOF allows multiple inheritance.

Ecore is part of the Eclipse Modeling Framework [48]
(EMF) developped by IBM. It is an implementation of
EMOF. The core EMF framework includes Ecore for de-
scribing models and runtime support for the models in-
cluding change notification, persistence support with de-
fault XMI serialization, and a very efficient reflective API
for manipulating EMF objects generically. The EMF frame-
work includes generic reusable classes for building editors
for EMF models and code generation facility capable of
generating everything needed to build a complete editor
for an EMF model.

Since Ecore is reflective and bootstrapped, Ecore meta-
models can be considered as models. In this section, we
leverage this facility to apply the generic model metric
proposed above to the measurement of Ecore metamod-
els.

5.2 Direct application of the σ metric for metamodel
measurement

Genero notes in [15] that unlike class measurement, the
object-oriented system metrics, also called package-scope
metrics [49,50] have been little investigated. Since the
notion of metamodel seems to be much more central in
MDE than the notion of package in object-oriented pro-
gramming languages, we aim to define metamodel met-
rics, not restricted to a given class i.e., metrics consid-
ering the metamodel as a whole. Thus, in this section,
we define 6 global and simple metamodel metrics, taken
or inspired from object-oriented system metrics. In the
remainder of this section, we study the direct application
of the σ metric for metamodel measurement i.e., metrics
at the metamodel level so as to give a numerical and
objective vision of metamodels. We consider:

NoC the number of classes.
NoD the number of primitive datatypes. A datatype is

a primary information type e.g., byte, short, int, etc.
TNoR the total number of references. It is the sum of

the number of references of each class. In the EMOF
terminology, a reference points to another class i.e.,
its type is a class and not a primitive type. The T (like
the first letter of total) denotes that one considers
the metamodel level (without the T, one considers
the number of references per class), thus TNoR =
Σi∈CNoRi.

TNoA the total number of attributes. It is the sum of
the number of attributes of each classes. Note that
we use the EMOF terminology: an attribute is a re-
lationship between a class and a dataype, it defines a
slot for primary information. The T denotes that one
considers the metamodel level (without the T, one
considers the number of attributes per class), thus
TNoA = Σi∈CNoAi.

NoAC the number of abstract classes;
NoE the number of enumerations. An enumeration is a

kind of datatype, hence NoE ≤ NoD.

Since metamodels can be considered as models w.r.t.
the metametamodel, let us consider Ecore metamodels
as models in the Eclipse Modeling Framework (EMF).
In this implementation, the metamodel metrics above
are σ metrics. Here are the corresponding filtering func-
tions (names refer to the ecore metamodel implemented
in EMF):

NoC φ(x) = (type(x) = ecore :: EClass);
NoD φ(x) = (type(x) = ecore :: EDataType);
TNoR φ(x) = (type(x) = ecore :: EReference);
TNoA φ(x) = (type(x) = ecore :: EAttribute);
NoAC φ(x) = (type(x) = ecore :: EClass and x.abstract =

true);
NoE φ(x) = (type(x) = ecore :: EEnumeration).

In the next section, we show that the generic σ metric
can be a building block for metrics which take into ac-
count the specificities of metamodels w.r.t. object-oriented
models.

5.3 The σ metric as a building block so as to take into
account metamodel specificities

Existing object-oriented metrics do no take into account
some modeling facilities available in EMOF metamod-
els. In this section, we use the Goal Question Metric
approach [31] to define three new metrics that leverage
these facilities so as to prove the ability of the σ metric
to ground other metrics.

5.3.1 Goal

Improve the knowledge about EMOF metamodels to iden-
tify bad and good practices, patterns and templates. This
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identification will finally improve the quality of produced
or refactored metamodels.

5.3.2 Questions

– How to characterize the use of associations in EMOF
metamodels from the metamodel designer and user
point of view ?

– How to numerically characterize the use of contain-
ment in EMOF metamodels from the metamodel de-
signer and user point of view ?

– How to numerically characterize whether the EMOF
metamodel is primitive data oriented or relationship
oriented ?

The answers of these question can be the independent
variables of an experiment where the dependent variable
is a quality attribute (e.g., from [51]) of a MDE process.
To this extent, our approach grounds the characteriza-
tion of metamodel quality.

5.3.3 Metrics

The navigability metric The navigability metric involves
the number of associations of the metamodel and TNoR
described above. The number of associations TNoAss of
the metamodel is a σ metric. The navigability metric is
further named Nav.
Definition 5 TNoAss = σφ/2 where φ(x) = (type(x) =
ecore :: EReference and x.opposite 6= null);
Definition 6 Nav = (2 ∗ TNoAss)/TNoR

Properties 0 ≤ Nav ≤ 1 since an association is made
from two references i.e., 2 ∗ TNoAss ≤ TNoR.

Interpretation If Nav = 0 the metamodel designer does
not at all use EMOF associations and only uses simple
references, if Nav = 1 the metamodel designer only uses
EMOF associations i.e., all references are bound to the
opposite one.

The containment metric The containment metric eval-
uates the use of containments in the metamodel. It is
further named Cont. The containment metric involves
four quantities A,B,C and D. A is the number of asso-
ciations with the containment role. B is the number of
associations TNoAss. C is the number of references with
the containment role not part of an association. D is the
number of references non part of an association.
– φA(x) = (type(x) = ecore :: EReference

and x.opposite 6= null and x.containment = true);
– φB(x) = (type(x) = ecore :: EReference

and x.opposite 6= null);
– φC(x) = (type(x) = ecore :: EReference

and x.opposite = null and x.containment = true);
– φD(x) = (type(x) = ecore :: EReference

and x.opposite = null);
Definition 7 Cont = (A/B + C/D)/2

Properties 0 ≤ Cont ≤ 1. Proof: 0 ≤ A,B,C,D since it
is a σ metric. A < B and C < D since φA (resp. φC)
is stronger than φB (resp. φD). Then A/B,C/D ≤ 1.
Finally, the division by 2 normalizes the metric to 1. If
B = 0 (resp. D = 0), then A = 0 (resp. C = 0). Hence, if
B = 0 (resp. D = 0), the whole term A/B (resp. C/D)
is discarded.

Interpretation If Cont = 0 the metamodel designer does
not use at all EMOF containment, if Cont = 1 the meta-
model designer always uses containment i.e., all relation-
ships have a container role.

Data quantity metric

Metric The data quantity metric is the ratio between the
number of EMOF attributes (EAttribute) and the num-
ber of EMOF structural features (EStructuralFeature).
It is further named Dat. It is based on global metamodel
metrics defined above in section 5.2.

Definition 8 Dat = TNoA/(TNoA+ TNoR)

Properties 0 < Dat < 1 by definition.

Interpretation The data quantity metric is a kind of sig-
nature of the modeled domain and/or the modeling style.

Note that there is no a priori good or bad values for
these 3 metrics. Future use and validation can clarify
their meanings. In the next section, we present empirical
results of the nine metrics presented.

5.4 Empirical results on real metamodels

5.4.1 Presentation of the metamodels

We aim to demonstrate the applicability of the generic
metric for metamodel measurement i.e., how the generic
metric fits to metamodel metrics. More and more meta-
models are publicly available, as part of open source
projects or standardization effort e.g., [47]. We have con-
figured our generic prototype for the nine metamodel
metrics previously exposed and computed them on the
following metamodels:

AADL Architecture Analysis & Design Language meta-
model, AADL is a standard for real-time embedded
systems driven by the Society of Automotive Engi-
neers - the corresponding Ecore implementation is
part of the standard;

UML2 the Unified Modeling Language metamodel - the
corresponding Ecore implementation comes from the
UML2 project of Eclipse.

Ecore the EMF implementation of the EMOF metamodel;
XML Schema Definition XML Schema Definition meta-

model - the Ecore implementation comes from the
EMF tool which provides support for converting be-
tween Ecore and XML Schema models;
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KDM Knowledge Discovery Metamodel of the OMG -
the Ecore implementation comes from the Atlantic
zoo3;

Java the Java 5 metamodel - the Ecore implementation
has been extracted from the Spoon tool [40] in our
team.

For the sake of replication, the Ecore implementation
of these metamodels used in this case study is available
on the web4.

5.4.2 Results

In table 3, we present the results obtained with our pro-
totype.

It shows that the σ metric is adapted to the meta-
model measurement; it also roots new metrics that lever-
age metamodel specificities; and it is implementable and
scalable enough to be applied to real world metamodels.

The basic interpretation of this table is that NoC,
TNoR, TNoA, NoDT enable an objective and numeric
description of metamodels in a concise manner. That is
to say, we can see without previous knowledge that all
these metamodels are relatively different in their struc-
ture. NoAC and NoE are refinements of these metrics.

It also shows that the ratio between references and
classes is discriminant: from more than two for XML-
Schema to approximately one for KDM. We tend to think
that there are two types of metamodels. The first type
is element-dominant such as KDM, where the main goal
is to explicit the concepts of a domain. The second type
is reference dominant, such as XMLSchema, where the
main goal is to describe relationships.

The metrics Nav, Cont and Dat are discriminant.
We believe that these metrics give information on the
modeled domain and the modeling styles and practices.
However, the balance between the domain and the style
cannot be determined. For instance, considering Cont,
UML2 has a value of 0.50 while Java5 has a value of
0.01. To our opinion, this can be due to the fact that the
Java5 modeler did not master the containment feature
of Ecore, or to the fact that the Java5 programming lan-
guage is not adapted to this modeling feature. The same
reasoning concerns Nav and Dat.

We showed in section 3.4 that, from a theoretical
point of view, the σ metric is closely related to size.
This is confirmed in this domain of application, where
intuitive metamodel size metrics e.g., number of classes,
are σ metrics. Note that metrics where σ is used as a
building block, such as Cont are not size metrics.

To conclude, we showed that the generic metric appli-
cation on metamodel measurement is possible i.e., per-
mits to define existing metrics and new metrics which
leverage the metamodel specificities.

3 http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/
4 http://www.monperrus.net/martin/

MDSDIQA-metamodels.zip

6 Future Research Directions

Our contribution enables the easy definition of metrics
and collection of metrics values. Thus, the main research
direction is to leverage the generic σ metric to identify
and empirically validate quality attributes in a given do-
main.

The study of metamodel metrics through the generic
σ metric led to the definition of the metrics Nav, Cont
and Dat. While our goal was to demonstrate the applica-
bility of the generic metric, we also aimed at defining new
and valuable metrics. This would be a better point in fa-
vor of generic metrics. However, we did not empirically
validate the relationships between these metrics and soft-
ware quality attributes. Future research is needed for the
validation.

Finally, an issue is that the application of the generic
σ metric is unaccessible to a non-programmer. This prac-
tice excludes the domain expert from defining and test-
ing metrics in an autonomous manner. To this extent,
a metric specific language is needed. As a perspective,
a metric specific language will be studied so as to pro-
vide an intuitive notation and a user-friendly interface
accessible to non-programmers. Defining and computing
metrics should be totally transparent so as to unleash
the domain analysis and creativity.

7 Conclusion and perspectives

In this chapter, we defined a generic metric that sup-
port the measurement of domain-specific attributes. The
generic metric σ is defined using set theory and first order
logic. It is the cardinality of a subset of model elements
satisfying a filtering function. The theoretical validity
of the generic σ metric is questionned in regard to type,
scale, dimensional analysis and measurement errors. This
shows that it is closely related to size.

To illustrate the genericity of the σ metric, we pre-
sented four case studies. We showed that the σ metric
is able to precise the concept of source lines of code. By
rising up Java source code at the model level, we were
able to produce σ metric values on open-source projects
including Eclipse-OSGI and Apache-Log4j. Two others
applications encompass a wider scope than code-centric
metrics. System engineering is engineering in the large.
Numerous relevant metrics identified by system engineer-
ing experts are applications of the generic σ metric. This
is an argument to go from non-semantic document cen-
tric system engineering to model driven engineering. In a
similar manner, the generic σ metric permits to express
metrics on requirements. The σ metric can also ground
metamodel metrics, which are a solution to have a con-
cise and objective summary of their internal complexity,
size and quality.
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Name NoC NoAC T NoR T NoA NoDT NoE Nav Cont Dat
KDM 259 51 263 31 7 1 0.56 0.35 0.10
UML2 228 48 437 91 19 13 0.36 0.50 0.17
AADL 189 39 387 34 13 8 0.12 0.28 0.08
Java5 73 1 92 39 13 0 0.12 0.01 0.30
XMLSchema 57 22 125 98 28 20 0 0.16 0.44
Ecore 18 5 34 3 32 0 0.50 0.49 0.48

Table 3 Results on EMOF metamodels.
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